Aging Clinical and Experimental Research

, Volume 10, Issue 5, pp 385–394 | Cite as

Calcium, gamma-linolenic acid and eicosapentaenoic acid supplementation in senile osteoporosis

  • M. C. Kruger
  • H. Coetzer
  • R. de Winter
  • G. Gericke
  • D. H. van Papendorp


Recent animal work suggests that gamma-linolenic acid (GLA) and eicosapentaenoic acid (EPA) enhance calcium absorption, reduce excretion and increase calcium deposition in bone. A pilot study was set up to test the interactions between calcium and GLA+EPA in humans. Sixty-five women (mean age 79.5), taking a background diet low in calcium, were randomly assigned to GLA+EPA or coconut oil placebo capsules; in addition, all received 600 mg/day calcium as the carbonate. Markers of bone formation/degradation and bone mineral density (BMD) were measured at baseline, 6, 12 and 18 months. Twenty-one patients were continued on treatment for a second period of 18 months, after which BMD (36 months) was measured. At 18 months, osteocalcin and deoxypyridinoline levels fell significantly in both groups, indicating a decrease in bone turnover, whereas bone specific alkaline phosphatase rose indicating beneficial effects of calcium given to all the patients. Lumbar and femoral BMD, in contrast, showed different effects in the two groups. Over the first 18 months, lumbar spine density remained the same in the treatment group, but decreased 3.2% in the placebo group. Femoral bone density increased 1.3% in the treatment group, but decreased 2.1% in the placebo group. During the second period of 18 months with all patients now on active treatment, lumbar spine density increased 3.1% in patients who remained on active treatment, and 2.3% in patients who switched from placebo to active treatment; femoral BMD in the latter group showed an increase of 4.7%. This pilot controlled study suggests that GLA and EPA have beneficial effects on bone in this group of elderly patients, and that they are safe to administer for prolonged periods of time.

Key words

Bone density bone turnover essential fatty acids osteoporosis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Heaney R.P.: Calcium in the prevention and treatment of osteoporosis. J. Intern. Med. 231: 169–180, 1992.PubMedCrossRefGoogle Scholar
  2. 2.
    Chapuy M.C., Meunier P.J.: Prevention of secondary hyperparathyroidism and hip fracture in elderly women with calcium and vitamin D3 supplements. Osteoporos. Int. 3 (Suppl.): S60–S63, 1996.CrossRefGoogle Scholar
  3. 3.
    Ledger G.A., Burritt M.F., Kao P.C., O’Fallon W.M., Riggs B.L.: Abnormalities of parathyroid hormone secretion in elderly women that are reversible by short-term therapy with 1,25 dihydroxy-vitamin D3. J. Clin. Endocrinol. Metab. 79 (1): 211–216, 1994.PubMedGoogle Scholar
  4. 4.
    Kochersberger G., Bales C., Lobough B., Lyles K.W.: Calcium supplementation lowers serum parathyroid hormone levels in elderly subjects. J. Gerontol. 45 (5): M159–M162, 1990.PubMedCrossRefGoogle Scholar
  5. 5.
    Rasmussen H., Matsumoto T., Fontaine Q., Goodman D.B.P.: Role of changes in membrane lipid structure in the action of 1,25-dihydroxyvitamin D3. Fed. Proc. 41: 72–77, 1982.PubMedGoogle Scholar
  6. 6.
    Hay A.W.M., Hassam A.G., Crawford M., Stevens P.A., Maver E.B., Sutherland Jones F.: Essential fatty acid restriction inhibits vitamin D-dependent calcium absorption. Lipids 15 (4): 251–254, 1985.CrossRefGoogle Scholar
  7. 7.
    Horrobin D.F.: Gammalinolenic acid: An intermediate in essential fatty acid metabolism with potential as an ethical pharmaceutical and as a food. Rev. Contemp. Pharmacother. 1: 1–45, 1990.Google Scholar
  8. 8.
    Meyer-Werger A., Jordan P., Moser U.K.: PUFA deficiency as risk factor for developing osteoporosis: results from the Seneca study. Int. Conference on highly unsaturated fatty acids in nutrition and disease prevention, Barcelona, Spain, 1996 (Abstract).Google Scholar
  9. 9.
    Borland V.G., Jackson C.M.: Effects of a fat free diet on the structure of the kidney in rats. Arch. Pathol. 11: 687–708, 1931.Google Scholar
  10. 10.
    Alfin-Slater R., Bernick S.: Changes in tissue lipids and tissue histology resulting from essential fatty acid deficiency in rats. Am. J. Clin. Nutr. 6: 613–624, 1958.PubMedGoogle Scholar
  11. 11.
    Sinclair H.M.: Deficiency of essential fatty acids in lower animals. In: Essential fatty acids. Butterworths, London, 1957, pp. 249–256.Google Scholar
  12. 12.
    Claassen N., Potgieter H.C., Seppa M., Vermaak W.J., Coetzer H., Van Papendorp D.H., Kruger M.C.: Supplemented gamma-linolenic acid and eicosapentaenoic acid influence bone status in young male rats: effects on free urinary collagen crosslinks, total urinary hydroxyproline and bone calcium content. Bone 16: 385S–392S, 1995.PubMedCrossRefGoogle Scholar
  13. 13.
    Kruger M.C., Claassen N., Potgieter H.C., Coetzer H., de Winter R.: Essential fatty acid supplementation and calcium retention in the ovariectomised rat. Osteoporos. Int. 6 (1): 101, 1996.CrossRefGoogle Scholar
  14. 14.
    Monsen E.R.: The 10th edition of the recommended dietary allowances: What’s new in the 1989 RDAs. J. Am. Diet. Assoc. 89 (12): 1748–1752, 1989.PubMedGoogle Scholar
  15. 15.
    Van Papendorp D.H., Coetzer H., Kruger M.C.: Biochemical profile of osteoporotic patients on fatty acid supplementation. Nutr. Res. 15 (3): 325–334, 1995.CrossRefGoogle Scholar
  16. 16.
    Tietz N.W.: Clinical guide to laboratory tests, ed. 2. Saunders, Philadelphia, PA, 1990.Google Scholar
  17. 17.
    Mazess R., Collick B., Trempe J., Barden H., Hanson J.: Performance evaluation of a dual-energy X-ray bone densitometer. Calcif. Tissue Int. 44 (3): 228–232, 1989.PubMedCrossRefGoogle Scholar
  18. 18.
    Melton J.L., Atkinson E.J., O’Fallon M., Wahner H.W., Riggs B.L.: Long-term fracture prediction by bone mineral assessed at different skeletal sites. J. Bone Miner. Res. 8 (10): 1227–1232, 1993.PubMedCrossRefGoogle Scholar
  19. 19.
    Folch J., Lees M., Sloane-Stanley G.H.: A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 479–509, 1956.Google Scholar
  20. 20.
    Manku M.S., Horrobin D.F., Huang Y.S., Morse N.: Fatty acids in plasma and red cell membranes in normal humans. Lipids 18: 906–908, 1983.PubMedCrossRefGoogle Scholar
  21. 21.
    Bell N.H.: Vitamin D metabolism, aging and bone loss. J. Clin. Endocrinol. Metab. 80 (4): 1051, 1995.PubMedGoogle Scholar
  22. 22.
    O’Doherty P.J.A.: Dihydroxyvitamin D3 increases the activity of the intestinal phosphatidylcholine deacylation — reacylation cycle. Lipids 14: 75–77, 1978.CrossRefGoogle Scholar
  23. 23.
    Lau K., Longman C.B., Gafter U., Dudeja P.K., Brasitus T.: Increased calcium absorption in prehypertensive spontaneously hypertensive rats. Role of serum 1,25 dihydroxyvitamin D3 levels and intestinal brush border membrane fluidity. J. Clin. Invest. 78: 1083–1090, 1986.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Boyan B.D., Dean D.D., Sylvia V.L., Schwartz Z.: Non-genomic regulation of extracellular matrix events by vitamin D metabolites. J. Cell. Biochem. 56: 331–339, 1994.PubMedCrossRefGoogle Scholar
  25. 25.
    Popp-Snyders C., Schouten J.A., De Jong A.P., Van der Veen E.A.: The effect of dietary cod-liver oil on the lipid composition of human erythrocyte membranes. Scand. J. Clin. Lab. Invest. 44: 39–46, 1984.CrossRefGoogle Scholar
  26. 26.
    Kruger M.C., Coetzer H., de Winter R., Claassen N.: Eico -sapentaenoic acid and docosahexaenoic acid supplementation increases calcium balance. Nutr. Res. 15: 211–219, 1995.CrossRefGoogle Scholar
  27. 27.
    Coetzer H., Claassen N., Van Papendorp D.H., Kruger M.C.: Calcium transport by isolated brush border and basolateral membrane vesicles. Role of essential fatty acid supplementation. Prostaglandins. Leukot. Essent. Fatty Acids 50: 251–266, 1994.CrossRefGoogle Scholar
  28. 28.
    Yamada Y., Fushimi H., Inoue T., Matsuyama Y., Kameyama M., Minami T., Okazaki Y., Noguchi Y., Kasama T.: Effect of eicosapentaenoic acid and docosahexaenoic acid on diabetic osteopenia. Diabetes Res. Clin. Practice 30: 37–42, 1995.CrossRefGoogle Scholar
  29. 29.
    Sakaguchi K., Murota S.: Eicosapentaenoic acid inhibits bone loss due to ovariectomy in rats. Prostaglandins. Leukot. Essent. Fatty Acids 50: 81–84, 1994.PubMedCrossRefGoogle Scholar
  30. 30.
    Eastell R., Yergey A.L., Vieira N.E., Cedel S.L., Kumar R., Riggs B.L.: Interrelationship among vitamin D metabolism, true calcium absorption, parathyroid function and age in women: Evidence of an age-related intestinal resistance to 1,25-dihydroxyvitamin D action. J. Bone Miner. Res. 6 (2): 125–132, 1991.PubMedCrossRefGoogle Scholar
  31. 31.
    Epstein S., Bryce G., Hinman J.W., Miller O.N., Riggs B.L., Hui S.L., Johnston C.C.: The influence of age on bone mineral regulating hormones. Bone 7: 421–425, 1986.PubMedCrossRefGoogle Scholar
  32. 32.
    Mundy G.R.: Bone remodelling and its disorders. Martin Dunitz, London, 1995.Google Scholar
  33. 33.
    Caulfield M.P.: Biochemical markers of bone resorption. Endocrinology 13 (2): 47–55, 1995.Google Scholar
  34. 34.
    Kushida K., Takahashi M., Kawana K., Inoue T.: Comparison of markers for bone formation and resorption in premenopausal and postmenopausal subjects and osteoporosis patients. J. Clin. Endocrinol. Metab. 80 (8): 2447–2450, 1995.PubMedGoogle Scholar
  35. 35.
    Hassager C., Fabbri-Mabelli G., Christiansen C.: The effect of the menopause and hormone replacement therapy on serum carboxyterminal propeptide of type 1 collagen. Osteoporos. Int. 3: 50–52, 1993.PubMedCrossRefGoogle Scholar
  36. 36.
    Charles P., Mosekilde L., Risteli L., Risteli J., Eriksen E.F.: Assessment of bone remodeling using biochemical indicators of type I collagen synthesis and degradation: relation to calcium kinetics. Bone Miner. 24: 81–94, 1994.PubMedCrossRefGoogle Scholar
  37. 37.
    Reid I.R., Ames R.W., Evans M., Gamble G.D., Sharpe S.J.: Effect of calcium supplementation on bone loss in postmenopausal women. N. Engl. J. Med. 328 (7): 460–464, 1993.PubMedCrossRefGoogle Scholar
  38. 38.
    Eriksen E.F., Charles P., Melsen F., Mosekilde L., Risteli L., Risteli J.: Serum markers of type I collagen formation and degradation in metabolic bone disease: correlation with bone histomorphometry. J. Bone Miner. Res. 8 (2): 127–132, 1993.PubMedCrossRefGoogle Scholar
  39. 39.
    Aloia J.F., Vaswani A., Yeh J.K., Ross P.L., Flaster E., Dilmanian F.A.: Calcium supplementation with and without hormone replacement therapy to prevent postmenopausal bone loss. Ann. Intern. Med. 120 (2): 97–103, 1994.PubMedCrossRefGoogle Scholar
  40. 40.
    Keen R.W., Nguyen T., Sobnack R., Perry L.A., Thompson P.W., Spector T.D.: Can biochemical markers predict bone loss at the hip and spine? A 4-year prospective study of 141 early postmenopausal women. Osteoporos. Int. 6: 399–406, 1996.PubMedCrossRefGoogle Scholar
  41. 41.
    Kanis J.A.: Calcium nutrition and its implications for osteoporosis. Part ll. After menopause. Eur. J. Clin. Nutr. 48: 833–841, 1994.PubMedGoogle Scholar
  42. 42.
    Heany R.P.: Interpreting trials with bone-active agents. Am. J. Med. 98: 329–330, 1995.CrossRefGoogle Scholar
  43. 43.
    Baggio B., Gambaro G., Zambon S., Marchini F., Bassi A., Bordin L., Clarl G., Manzato E.: Anomalous phospholipid n-6 polyunsaturated fatty acid composition in idiopathic calcium nephrolithiasis. J. Am. Soc. Nephrol. 7 (4): 613–620, 1996.PubMedGoogle Scholar
  44. 44.
    Buck A.C., Davies R.L., Harrison T.: The protective role of eicosapentaenoic acid in the pathogenesis of nephrolithiasis. J. Urol. 146: 188–194, 1991.PubMedGoogle Scholar
  45. 45.
    Raisz L.G., Pilbeam C.C., Fall P.M.: Prostaglandins: Mechanism of action and regulation of production in bone. Osteoporos. Int. 1 (Suppl.): S136–S140, 1993.CrossRefGoogle Scholar
  46. 46.
    Watkins B.A., Shen C-L., McMurtry J.P., Xu H., Allen K.G.D., Seifert M.F.: Dietary lipids modulate bone prostaglandin E2 production, insulin-like growth factor-1 concentration and formation in chicks. J. Nutr. 127: 1084–1091, 1997.PubMedGoogle Scholar

Copyright information

© Springer Internal Publishing Switzerland 1998

Authors and Affiliations

  • M. C. Kruger
    • 1
  • H. Coetzer
    • 1
  • R. de Winter
    • 1
  • G. Gericke
    • 2
  • D. H. van Papendorp
    • 1
  1. 1.Dept. of PhisiologyUniversity of PretoriaPretoriaSouth Africa
  2. 2.Division of Human NutritionUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations