Skip to main content
Log in

Calcium, gamma-linolenic acid and eicosapentaenoic acid supplementation in senile osteoporosis

  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Recent animal work suggests that gamma-linolenic acid (GLA) and eicosapentaenoic acid (EPA) enhance calcium absorption, reduce excretion and increase calcium deposition in bone. A pilot study was set up to test the interactions between calcium and GLA+EPA in humans. Sixty-five women (mean age 79.5), taking a background diet low in calcium, were randomly assigned to GLA+EPA or coconut oil placebo capsules; in addition, all received 600 mg/day calcium as the carbonate. Markers of bone formation/degradation and bone mineral density (BMD) were measured at baseline, 6, 12 and 18 months. Twenty-one patients were continued on treatment for a second period of 18 months, after which BMD (36 months) was measured. At 18 months, osteocalcin and deoxypyridinoline levels fell significantly in both groups, indicating a decrease in bone turnover, whereas bone specific alkaline phosphatase rose indicating beneficial effects of calcium given to all the patients. Lumbar and femoral BMD, in contrast, showed different effects in the two groups. Over the first 18 months, lumbar spine density remained the same in the treatment group, but decreased 3.2% in the placebo group. Femoral bone density increased 1.3% in the treatment group, but decreased 2.1% in the placebo group. During the second period of 18 months with all patients now on active treatment, lumbar spine density increased 3.1% in patients who remained on active treatment, and 2.3% in patients who switched from placebo to active treatment; femoral BMD in the latter group showed an increase of 4.7%. This pilot controlled study suggests that GLA and EPA have beneficial effects on bone in this group of elderly patients, and that they are safe to administer for prolonged periods of time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Heaney R.P.: Calcium in the prevention and treatment of osteoporosis. J. Intern. Med. 231: 169–180, 1992.

    Article  CAS  PubMed  Google Scholar 

  2. Chapuy M.C., Meunier P.J.: Prevention of secondary hyperparathyroidism and hip fracture in elderly women with calcium and vitamin D3 supplements. Osteoporos. Int. 3 (Suppl.): S60–S63, 1996.

    Article  Google Scholar 

  3. Ledger G.A., Burritt M.F., Kao P.C., O’Fallon W.M., Riggs B.L.: Abnormalities of parathyroid hormone secretion in elderly women that are reversible by short-term therapy with 1,25 dihydroxy-vitamin D3. J. Clin. Endocrinol. Metab. 79 (1): 211–216, 1994.

    CAS  PubMed  Google Scholar 

  4. Kochersberger G., Bales C., Lobough B., Lyles K.W.: Calcium supplementation lowers serum parathyroid hormone levels in elderly subjects. J. Gerontol. 45 (5): M159–M162, 1990.

    Article  CAS  PubMed  Google Scholar 

  5. Rasmussen H., Matsumoto T., Fontaine Q., Goodman D.B.P.: Role of changes in membrane lipid structure in the action of 1,25-dihydroxyvitamin D3. Fed. Proc. 41: 72–77, 1982.

    CAS  PubMed  Google Scholar 

  6. Hay A.W.M., Hassam A.G., Crawford M., Stevens P.A., Maver E.B., Sutherland Jones F.: Essential fatty acid restriction inhibits vitamin D-dependent calcium absorption. Lipids 15 (4): 251–254, 1985.

    Article  Google Scholar 

  7. Horrobin D.F.: Gammalinolenic acid: An intermediate in essential fatty acid metabolism with potential as an ethical pharmaceutical and as a food. Rev. Contemp. Pharmacother. 1: 1–45, 1990.

    Google Scholar 

  8. Meyer-Werger A., Jordan P., Moser U.K.: PUFA deficiency as risk factor for developing osteoporosis: results from the Seneca study. Int. Conference on highly unsaturated fatty acids in nutrition and disease prevention, Barcelona, Spain, 1996 (Abstract).

    Google Scholar 

  9. Borland V.G., Jackson C.M.: Effects of a fat free diet on the structure of the kidney in rats. Arch. Pathol. 11: 687–708, 1931.

    CAS  Google Scholar 

  10. Alfin-Slater R., Bernick S.: Changes in tissue lipids and tissue histology resulting from essential fatty acid deficiency in rats. Am. J. Clin. Nutr. 6: 613–624, 1958.

    CAS  PubMed  Google Scholar 

  11. Sinclair H.M.: Deficiency of essential fatty acids in lower animals. In: Essential fatty acids. Butterworths, London, 1957, pp. 249–256.

    Google Scholar 

  12. Claassen N., Potgieter H.C., Seppa M., Vermaak W.J., Coetzer H., Van Papendorp D.H., Kruger M.C.: Supplemented gamma-linolenic acid and eicosapentaenoic acid influence bone status in young male rats: effects on free urinary collagen crosslinks, total urinary hydroxyproline and bone calcium content. Bone 16: 385S–392S, 1995.

    Article  CAS  PubMed  Google Scholar 

  13. Kruger M.C., Claassen N., Potgieter H.C., Coetzer H., de Winter R.: Essential fatty acid supplementation and calcium retention in the ovariectomised rat. Osteoporos. Int. 6 (1): 101, 1996.

    Article  Google Scholar 

  14. Monsen E.R.: The 10th edition of the recommended dietary allowances: What’s new in the 1989 RDAs. J. Am. Diet. Assoc. 89 (12): 1748–1752, 1989.

    CAS  PubMed  Google Scholar 

  15. Van Papendorp D.H., Coetzer H., Kruger M.C.: Biochemical profile of osteoporotic patients on fatty acid supplementation. Nutr. Res. 15 (3): 325–334, 1995.

    Article  Google Scholar 

  16. Tietz N.W.: Clinical guide to laboratory tests, ed. 2. Saunders, Philadelphia, PA, 1990.

    Google Scholar 

  17. Mazess R., Collick B., Trempe J., Barden H., Hanson J.: Performance evaluation of a dual-energy X-ray bone densitometer. Calcif. Tissue Int. 44 (3): 228–232, 1989.

    Article  CAS  PubMed  Google Scholar 

  18. Melton J.L., Atkinson E.J., O’Fallon M., Wahner H.W., Riggs B.L.: Long-term fracture prediction by bone mineral assessed at different skeletal sites. J. Bone Miner. Res. 8 (10): 1227–1232, 1993.

    Article  PubMed  Google Scholar 

  19. Folch J., Lees M., Sloane-Stanley G.H.: A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 479–509, 1956.

    Google Scholar 

  20. Manku M.S., Horrobin D.F., Huang Y.S., Morse N.: Fatty acids in plasma and red cell membranes in normal humans. Lipids 18: 906–908, 1983.

    Article  CAS  PubMed  Google Scholar 

  21. Bell N.H.: Vitamin D metabolism, aging and bone loss. J. Clin. Endocrinol. Metab. 80 (4): 1051, 1995.

    CAS  PubMed  Google Scholar 

  22. O’Doherty P.J.A.: Dihydroxyvitamin D3 increases the activity of the intestinal phosphatidylcholine deacylation — reacylation cycle. Lipids 14: 75–77, 1978.

    Article  Google Scholar 

  23. Lau K., Longman C.B., Gafter U., Dudeja P.K., Brasitus T.: Increased calcium absorption in prehypertensive spontaneously hypertensive rats. Role of serum 1,25 dihydroxyvitamin D3 levels and intestinal brush border membrane fluidity. J. Clin. Invest. 78: 1083–1090, 1986.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Boyan B.D., Dean D.D., Sylvia V.L., Schwartz Z.: Non-genomic regulation of extracellular matrix events by vitamin D metabolites. J. Cell. Biochem. 56: 331–339, 1994.

    Article  CAS  PubMed  Google Scholar 

  25. Popp-Snyders C., Schouten J.A., De Jong A.P., Van der Veen E.A.: The effect of dietary cod-liver oil on the lipid composition of human erythrocyte membranes. Scand. J. Clin. Lab. Invest. 44: 39–46, 1984.

    Article  Google Scholar 

  26. Kruger M.C., Coetzer H., de Winter R., Claassen N.: Eico -sapentaenoic acid and docosahexaenoic acid supplementation increases calcium balance. Nutr. Res. 15: 211–219, 1995.

    Article  CAS  Google Scholar 

  27. Coetzer H., Claassen N., Van Papendorp D.H., Kruger M.C.: Calcium transport by isolated brush border and basolateral membrane vesicles. Role of essential fatty acid supplementation. Prostaglandins. Leukot. Essent. Fatty Acids 50: 251–266, 1994.

    Article  Google Scholar 

  28. Yamada Y., Fushimi H., Inoue T., Matsuyama Y., Kameyama M., Minami T., Okazaki Y., Noguchi Y., Kasama T.: Effect of eicosapentaenoic acid and docosahexaenoic acid on diabetic osteopenia. Diabetes Res. Clin. Practice 30: 37–42, 1995.

    Article  CAS  Google Scholar 

  29. Sakaguchi K., Murota S.: Eicosapentaenoic acid inhibits bone loss due to ovariectomy in rats. Prostaglandins. Leukot. Essent. Fatty Acids 50: 81–84, 1994.

    Article  CAS  PubMed  Google Scholar 

  30. Eastell R., Yergey A.L., Vieira N.E., Cedel S.L., Kumar R., Riggs B.L.: Interrelationship among vitamin D metabolism, true calcium absorption, parathyroid function and age in women: Evidence of an age-related intestinal resistance to 1,25-dihydroxyvitamin D action. J. Bone Miner. Res. 6 (2): 125–132, 1991.

    Article  CAS  PubMed  Google Scholar 

  31. Epstein S., Bryce G., Hinman J.W., Miller O.N., Riggs B.L., Hui S.L., Johnston C.C.: The influence of age on bone mineral regulating hormones. Bone 7: 421–425, 1986.

    Article  CAS  PubMed  Google Scholar 

  32. Mundy G.R.: Bone remodelling and its disorders. Martin Dunitz, London, 1995.

    Google Scholar 

  33. Caulfield M.P.: Biochemical markers of bone resorption. Endocrinology 13 (2): 47–55, 1995.

    Google Scholar 

  34. Kushida K., Takahashi M., Kawana K., Inoue T.: Comparison of markers for bone formation and resorption in premenopausal and postmenopausal subjects and osteoporosis patients. J. Clin. Endocrinol. Metab. 80 (8): 2447–2450, 1995.

    CAS  PubMed  Google Scholar 

  35. Hassager C., Fabbri-Mabelli G., Christiansen C.: The effect of the menopause and hormone replacement therapy on serum carboxyterminal propeptide of type 1 collagen. Osteoporos. Int. 3: 50–52, 1993.

    Article  CAS  PubMed  Google Scholar 

  36. Charles P., Mosekilde L., Risteli L., Risteli J., Eriksen E.F.: Assessment of bone remodeling using biochemical indicators of type I collagen synthesis and degradation: relation to calcium kinetics. Bone Miner. 24: 81–94, 1994.

    Article  CAS  PubMed  Google Scholar 

  37. Reid I.R., Ames R.W., Evans M., Gamble G.D., Sharpe S.J.: Effect of calcium supplementation on bone loss in postmenopausal women. N. Engl. J. Med. 328 (7): 460–464, 1993.

    Article  CAS  PubMed  Google Scholar 

  38. Eriksen E.F., Charles P., Melsen F., Mosekilde L., Risteli L., Risteli J.: Serum markers of type I collagen formation and degradation in metabolic bone disease: correlation with bone histomorphometry. J. Bone Miner. Res. 8 (2): 127–132, 1993.

    Article  CAS  PubMed  Google Scholar 

  39. Aloia J.F., Vaswani A., Yeh J.K., Ross P.L., Flaster E., Dilmanian F.A.: Calcium supplementation with and without hormone replacement therapy to prevent postmenopausal bone loss. Ann. Intern. Med. 120 (2): 97–103, 1994.

    Article  CAS  PubMed  Google Scholar 

  40. Keen R.W., Nguyen T., Sobnack R., Perry L.A., Thompson P.W., Spector T.D.: Can biochemical markers predict bone loss at the hip and spine? A 4-year prospective study of 141 early postmenopausal women. Osteoporos. Int. 6: 399–406, 1996.

    Article  CAS  PubMed  Google Scholar 

  41. Kanis J.A.: Calcium nutrition and its implications for osteoporosis. Part ll. After menopause. Eur. J. Clin. Nutr. 48: 833–841, 1994.

    CAS  PubMed  Google Scholar 

  42. Heany R.P.: Interpreting trials with bone-active agents. Am. J. Med. 98: 329–330, 1995.

    Article  Google Scholar 

  43. Baggio B., Gambaro G., Zambon S., Marchini F., Bassi A., Bordin L., Clarl G., Manzato E.: Anomalous phospholipid n-6 polyunsaturated fatty acid composition in idiopathic calcium nephrolithiasis. J. Am. Soc. Nephrol. 7 (4): 613–620, 1996.

    CAS  PubMed  Google Scholar 

  44. Buck A.C., Davies R.L., Harrison T.: The protective role of eicosapentaenoic acid in the pathogenesis of nephrolithiasis. J. Urol. 146: 188–194, 1991.

    CAS  PubMed  Google Scholar 

  45. Raisz L.G., Pilbeam C.C., Fall P.M.: Prostaglandins: Mechanism of action and regulation of production in bone. Osteoporos. Int. 1 (Suppl.): S136–S140, 1993.

    Article  Google Scholar 

  46. Watkins B.A., Shen C-L., McMurtry J.P., Xu H., Allen K.G.D., Seifert M.F.: Dietary lipids modulate bone prostaglandin E2 production, insulin-like growth factor-1 concentration and formation in chicks. J. Nutr. 127: 1084–1091, 1997.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruger, M.C., Coetzer, H., de Winter, R. et al. Calcium, gamma-linolenic acid and eicosapentaenoic acid supplementation in senile osteoporosis. Aging Clin Exp Res 10, 385–394 (1998). https://doi.org/10.1007/BF03339885

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03339885

Key words

Navigation