Advertisement

Aging Clinical and Experimental Research

, Volume 11, Issue 5, pp 335–342 | Cite as

Prolonged treatment with α-glycerylphosphorylethanolamine facilitates the acquisition of an active avoidance behavior and selectively increases neuronal signal transduction in rats

  • T. Florio
  • A. Bajetto
  • S. Thellung
  • S. Arena
  • A. Corsaro
  • R. Bonavia
  • M. Merlino
  • G. Schettini
Original Article

Abstract

The effects of α-glycerylphosphorylethanolamine on both behavioral and neurochemical parameters were studied in adult rats. Daily administration of the drug caused a significant improvement in the behavioral performance of rats in the active avoidance conditioning test. This effect was observed after about ten days of treatment, and lasted until the end of the experiment (fifteen days). The improvement in this memory-related behavioral test correlated with a facilitation of both muscarinic and β-adrenergic stimulation of brain adenylyl cyclase activity. Conversely, no changes were observed in basal or forskolin-induced stimulation of cAMP production, suggesting that the α-glycerylphosphorylethanolamine effects were not directed on the enzyme itself, but might favor the coupling between receptors, G proteins and effectors. Similar results were observed on the muscarinic stimulation of inositol phosphate accumulation although, in this case, a potentiation of the basal activity also occurred. In conclusion, our data indicate that daily treatment with α-glycerylphosphorylethanolamine improves the learning and memory processes in the rat, evaluated using the active avoidance conditioning test. Furthermore, the subchronic administration of this compound is able to enhance receptor-mediated neuronal signal transduction, namely cAMP and inositol phosphate production. These neurochemical modifications may represent, at least in part, the molecular mechanisms of action of the drug.

Key words

cAMP inositol phosphate L-α-glyceryl-phosphorylethanolamine learning and memory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gabbita S.P., Subramaniam R., Allouch F., Carney J.M., Butterfield D.A.: Effects of mitochondrial respiratory stimulation on membrane lipids and proteins: an electron paramagnetic resonance investigation. Biochim. Biophys. Acta 1372: 163–173, 1998.PubMedCrossRefGoogle Scholar
  2. 2.
    Gibson G.E., Peterson C.: Calcium and the aging nervous system. Neurobiol. Aging 8: 329–343, 1987.PubMedCrossRefGoogle Scholar
  3. 3.
    Schroeder F.: Role of membrane lipid asymmetry in aging. Neurobiol. Aging 5: 323–333, 1988.CrossRefGoogle Scholar
  4. 4.
    Adlin E.V., Korenmann S.: Endocrine aspects of aging. Ann. Intern. Med. 92: 429–431, 1980.PubMedCrossRefGoogle Scholar
  5. 5.
    Roth G.S.: Hormone action during aging: alterations and mechanisms. Mech. Ageing Dev. 9: 497–514, 1979.PubMedCrossRefGoogle Scholar
  6. 6.
    Roth G.S.: Hormone receptor changes during adulthood and senescence: significance for aging research. Fed. Proc. 38: 1910–1914, 1979.PubMedGoogle Scholar
  7. 7.
    Ciminio M., Curatola G., Pezzoli C., Stramentinoli G., Vantinoli G., Algeri S.: Age-related modification of dopaminergic and beta-adrenergic receptor system: restoration of normal activity by modifying membrane fluidity with S-adenosylmethionine. In: Agnoli A., Crepaldi G., Spano P., Trabucchi M. (Eds.), Aging brain and ergot alkaloids. Raven Press, New York, 1982, pp. 79–88.Google Scholar
  8. 8.
    Shinitzki M., Heron D., Samuel D.: Restoration of membrane fluidity and serotonin receptors in the aged mouse brain. In: Samuel D., Algeri S., Gershon S., Grimm V., Toffano G. (Eds.), Aging of the brain. Raven Press, New York, 1986, Vol. 22, pp. 329–336.Google Scholar
  9. 9.
    Bartus R.T., Dean R., Lippa A.S., Beer B.: The cholinergic hypothesis of geriatric memory dysfunction. Science 217: 408–417, 1982.PubMedCrossRefGoogle Scholar
  10. 10.
    Sarter M.: Taking stock of cognition enhancer. Trends Pharmacol. Sci. 12: 456–461, 1991.PubMedCrossRefGoogle Scholar
  11. 11.
    Ladd S.L., Sommer S.A., La Berge S., Toscano W.: Effect of phosphatidylcholine on explicit memory. Clin. Neuropharmacol. 16: 540–549, 1993.PubMedCrossRefGoogle Scholar
  12. 12.
    Bostwick J.R., Appe R., Appel S.H.: Phosphoethanolamine enhances high affinity choline uptake and acetyl choline synthesis in dissociated cell cultures of the rat septal nucleus. J. Neurochem. 59: 236–243, 1992.PubMedCrossRefGoogle Scholar
  13. 13.
    McMaster C., Choi P.C.: Newly imported ethanolamine is preferentially utilized for phosphatidylethanolamine biosynthesis in the hamster heart. Biochim. Biophys. Acta 1112: 13–16, 1992.CrossRefGoogle Scholar
  14. 14.
    Florio T., Ventra C., Rapanà A., Scorziello A., Cocozza Di Montanara E., Talia S., Postiglione A., Marino A., Schettini G.: Dihydroergotoxine treatment improves active avoidance performance and increases dopamine-stimulated adenylate cyclase activity, in young and aged rats. Behav. Pharmacol. 2: 31–36, 1991.PubMedCrossRefGoogle Scholar
  15. 15.
    Salomon Y., Londos C., Rodbell M.: A highly sensitive adenylate cyclase assay. Anal. Biochem. 58: 541–548, 1974.PubMedCrossRefGoogle Scholar
  16. 16.
    Paxinos G., Watson C.: The rat brain stereotaxic coordinates. Academic Press, New York, 1982.Google Scholar
  17. 17.
    Schettini G., Florio T., Meucci O., Landolfi E., Grimaldi M., Ventra C., Marino A.: Somatostatin inhibition of adenylate cyclase activity in different brain areas. Brain Res. 492: 65–71, 1989.PubMedCrossRefGoogle Scholar
  18. 18.
    Bradford M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248–254, 1976.PubMedCrossRefGoogle Scholar
  19. 19.
    Hollingsworth E.B., McNeal E.T., Burton J.L., Williams R.J., Daly J.V., Creveling C.R.: Biochemical characterization of a filtered synaptoneurosome preparation from guinea pig cerebral cortex: cyclic adenosine 3′5′-monophosphate-generating system, receptors and enzymes. J. Neurosci. 5: 2240–2253, 1985.PubMedGoogle Scholar
  20. 20.
    Berridge M.J.: Inositol trisphosphate and diacylglycerol as second messengers. Biochem. J. 220: 345–360, 1984.PubMedGoogle Scholar
  21. 21.
    Kruskal W.H., Wallis W.A.: Use of the rank inone criterion variance analysis. J. Am. Stat. Ass. 47: 538–621, 1952.CrossRefGoogle Scholar
  22. 22.
    Conver W.J.: Practical non parametric statistics. J. Wiley, New York, 1980, pp. 229–233.Google Scholar
  23. 23.
    Muccioli G., Raso G.M., Ghe C., Di Carlo R.: Effect of L-alpha-glycerylphosphoryl choline on muscarinic receptors and membrane microviscosity of aged rat brain. Prog. Neuropsychopharmacol. Biol. Psychiatry 20: 323–329, 1996.PubMedCrossRefGoogle Scholar
  24. 24.
    Aleppo G., Nicoletti F., Sortino M., Casabona G., Scapagnini U., Canonico P.L.: Chronic L-alpha-glycerylphosphoryl choline increases inositol phosphate formation in brain slices and neuronal cultures. Pharmacol. Toxicol. 74: 95–100, 1994.PubMedCrossRefGoogle Scholar
  25. 25.
    Battaini F., Del Vesco R., Govoni S., Lopez C., Trabucchi M.: Modification of phorbol ester binding and protein kinase C activity in various brain areas of aged rats. Neurobiol. Aging 11: 536–566, 1990.CrossRefGoogle Scholar
  26. 26.
    Battaini F., Lucchi L., Ladisa V., Bergamaschi S., Govoni S., Trabucchi M.: Age related changes in brain protein kinase C expression, activity and translocation. In: Scriabine A., Taber J. (Eds.), New Drugs Symposia, Neva Press, 1993.Google Scholar

Copyright information

© Springer Internal Publishing Switzerland 1999

Authors and Affiliations

  • T. Florio
    • 1
  • A. Bajetto
    • 2
  • S. Thellung
    • 2
  • S. Arena
    • 2
  • A. Corsaro
    • 2
  • R. Bonavia
    • 2
  • M. Merlino
    • 2
  • G. Schettini
    • 2
  1. 1.Department of Biomedical Sciences, Section of PharmacologyUniversity of ChietiChietiItaly
  2. 2.Unit of Pharmacology and Neuroscience, Advanced Biotechnology Center (CBA) and National Cancer Institute (IST), Section of Pharmacology, Department of OncologyUniversity of GenovaGenovaItaly

Personalised recommendations