Skip to main content
Log in

Intervention in Aging. V: “Theories and models on aging”

May 3, 1997, Pisa, Italy

  • Symposium Report
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Rose M.R.: Evolutionary Biology of Aging. Oxford University Press, New York, 1991, pp. 3–221.

    Google Scholar 

  2. Masoro E.J.: Aging: Current Concepts. In: Masoro E.J. (Ed.), Handbook of Physiology, Section 11: Aging. Oxford University Press, New York, 1995, pp. 3–21.

    Google Scholar 

  3. Medawar P.B.: Old age and natural death. Modern Quarterly 1: 30–56, 1946.

    Google Scholar 

  4. Williams G.C.: Pleiotropy, natural selection, and the evolution of senescence. Evolution 11: 398–411, 1957.

    Article  Google Scholar 

  5. Kirkwood T.B.L.: The Disposable Soma Theory of Aging. In: Harrison D.E. (Ed.), Genetic Effects on Aging. II. Telford Press, Caldwell, NJ, 1990, pp. 9–19.

    Google Scholar 

  6. Martin G.M., Austad S.N., Johnson T.E.: Genetic analysis of ageing: role of oxidative damage and environmental stresses. Nature Genetics 13: 25–34, 1996.

    Article  CAS  PubMed  Google Scholar 

  7. Lithgow G.J., Kirkwood T.B.L.: Mechanisms and evolution of aging. Science 273: 80, 1996.

    Article  CAS  PubMed  Google Scholar 

  8. Masoro E.J., Austad S.N.: The evolution of the antiaging action of dietary restriction: A hypothesis. J. Gerontol. 51A: B387–B391, 1996.

    Article  CAS  Google Scholar 

References

  1. Hayflick L., Moorhead P.S.: The serial cultivation of human diploid cell strains. Exp. Cell Res. 25: 585–621, 1961.

    Article  CAS  PubMed  Google Scholar 

  2. Gupta R.S.: Senescence of cultured human diploid fibroblasts. Are mutations responsible? J. Cell. Physiol. 103: 209–216, 1980.

    Article  CAS  PubMed  Google Scholar 

  3. Hart R.W., Setlow R.B.: DNA repair in late-passage human cells. Mech. Ageing Dev. 5: 67–77, 1976.

    Article  CAS  PubMed  Google Scholar 

  4. Harley C.B., Pollard J.W., Chamberlain J.W., Stanners C.P., Goldstein S.: Protein synthetic errors do not increase during aging of cultured human fibroblasts. Proc. Natl. Acad. Sci. USA 77: 1885–1889, 1980.

    Article  CAS  PubMed  Google Scholar 

  5. Bunn C.L., Tarrant G.M.: Limited lifespan in somatic cell hybrids and cybrids. Exp. Cell Res. 37: 385–396, 1980.

    Article  Google Scholar 

  6. Muggleton-Harris A.L., De Simone D.W.: Replicative potentials of various fusion products between WI-38 and SV40 transformed WI-38 cells and their components. Somat. Cell Mol. Genet. 6: 689–698, 1980.

    Article  CAS  Google Scholar 

  7. Pereira-Smith O.M., Smith J.R.: Expression of SV40 T antigen infinite lifespan hybrids of normal-SV40 transformed fibroblasts. Somat. Cell Mol. Genet. 7: 411–421, 1981.

    Article  CAS  Google Scholar 

  8. Pereira-Smith O.M., Smith J.R.: Evidence for the recessive nature of cellular immortality. Science 221: 964–966, 1983.

    Article  CAS  PubMed  Google Scholar 

  9. Ning Y., Pereira-Smith O.M.: Molecular genetic approaches to the study of cellular senescence. Mutat. Res. 256: 303–310, 1991.

    Article  CAS  PubMed  Google Scholar 

  10. Pereira-Smith O.M., Smith J.R.: Genetic analysis of indefinite division in human cells: Identification of four complementation groups. Proc. Natl. Acad. Sci. U.S.A. 85: 6042–6046, 1988.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Whitaker N.J., Kidston E.L., Reddel R.R.: Finite lifespan of hybrids formed by fusion of different SV40 immortalization cell lines. J. Virol. 66: 1202–1206, 1992.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Duncan E.L., Whitaker N.J., Moy E.L., Reddel R.R.: Assignment of SV40-immortalized cells to more than one complementation group for immortalization. Exp. Cell Res. 205: 337–344, 1993.

    Article  CAS  PubMed  Google Scholar 

  13. Ning Y., Weber J.L., Killary A.M., Ledbetter D.H., Smith J.R., Pereira-Smith O.M.: Genetic analysis of indefinite division in human cells: Evidence for a cell senescence-related gene(s) on human chromosome 11 is not due to cellular senescence. Proc. Natl. Acad. Sci. USA 88: 5635–5639, 1991.

    Article  CAS  PubMed  Google Scholar 

  14. Hensler P.J., Annab L.A., Barrett J.C., Pereira-Smith O.M.: A gene involved in control of human cellular senescence on human chromosome 1q. Mol. Cell. Biol. 14: 2291–2297, 1994.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Ogata T., Ayusawa D., Namba M., Takahashi E., Oshimura M., Oishi M.: Chromosome 7 suppresses indefinite division of nontumorigenic immortalized human fibroblast cell lines KMST-6 and SUSM-1. Mol. Cell. Biol. 13: 6036–6043, 1993.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Ogata T., Oshimura M., Namba M., Fujii M., Oishi M., Ayusawa D.: Genetic complementation of the immortal phenotype in group D cell lines by introduction of Chromosome 7. Jpn. J. Cancer Res. 86: 35–40, 1995.

    Article  CAS  PubMed  Google Scholar 

References

  1. Holliday R.: Understanding Ageing. Cambridge University Press, Cambridge, 1995, pp. 1–207.

    Book  Google Scholar 

  2. Rattan S.I.S.: Ageing — a biological perspective. Molec. Aspects Med. 16: 439–508, 1995.

    Article  CAS  Google Scholar 

  3. Bohr V.A., Anson R.M.: DNA damage, mutation and fine structure repair in aging. Mutat. Res. 338: 25–34, 1995.

    Article  CAS  PubMed  Google Scholar 

  4. Rattan S.I.S.: Synthesis, modifications and turnover of proteins during aging. Exp. Gerontol. 31: 33–47, 1996.

    Article  CAS  PubMed  Google Scholar 

  5. Cristofalo V.J., Pignolo R.J.: Molecular markers of senescence in fibroblast-like cultures. Exp. Gerontol. 31: 111–123, 1996.

    Article  CAS  PubMed  Google Scholar 

  6. Derventzi A., Rattan S.I.S., Gonos E.S.: Molecular links between cellular mortality and immortality. Anticancer Res. 16: 2901–2910, 1996.

    CAS  PubMed  Google Scholar 

  7. Olovnikov A.M.: Telomeres, telomerases, and aging: origin of the theory. Exp. Gerontol. 31: 443–448, 1996.

    Article  CAS  PubMed  Google Scholar 

  8. Rattan S.I.S.: Gerontogenes: real or virtual? FASEB J. 9: 284–286, 1995.

    CAS  PubMed  Google Scholar 

  9. Rattan S.I.S., Toussaint O.: Molecular Gerontology — Research Status and Strategies. Plenum Press, New York, 1996, pp. 1–216.

    Book  Google Scholar 

References

  1. Monnier V.M.: Non enzymatic glycosylation, the Maillard reaction and the aging process. J. Gerontol. 45: B105–B111, 1990.

    Article  CAS  PubMed  Google Scholar 

  2. Harman D.: Free radical theory of aging. Mutat. Res. 275: 257–266, 1992.

    Article  CAS  PubMed  Google Scholar 

  3. Davies K.J.A.: Protein damage and degradation by oxygen radicals. I. General aspects. J. Biol. Chem. 262: 9895–9901, 1987.

    CAS  PubMed  Google Scholar 

  4. Halliwell B., Gutteridge J.M.C.: Free Radicals in Biology and Medicine. Clarendon Press, Oxford, 1989.

    Google Scholar 

  5. Carini R., Mazzanti R., Biasi F., Chiarpotto E., Marmo G., Moscarella S., Gentilini P., Dianzani M.U., Poli G.: Fluorescent aldehyde-protein adducts in blood serum of healthy alcoholics. Adv. in Biosc. 71: 61–64, 1988.

    Google Scholar 

  6. Sell D.R., Nagaraj R.H., Grandhee S.K., Odetti P., Lapolla A., Fogarty J., Monnier V.M.: Pentosidine: a molecular marker for the cumulative damage to proteins in diabetes, aging and uraemia. Diabetes Metab. Rev. 7: 239–251, 1991.

    Article  CAS  PubMed  Google Scholar 

  7. Wolff S.P., Dean R.T.: Glucose autoxidation and protein modification. Biochem J. 245: 243–250, 1987.

    CAS  PubMed  Google Scholar 

  8. Hicks M., Delbridge L., Yue D.K., Reeve T.S.: Catalysis of lipid peroxidation by glucose and glycosylated collagen. Biochem. Biophys. Res. Commun. 151: 649–655, 1988.

    Article  CAS  PubMed  Google Scholar 

  9. Chace C.V., Carubelli R., Nordquist E.: The role of nonenzymatic glycosylation, transition metals and free radicals in the formation of collagen aggregates. Arch. Biochem. Biophys. 288: 473–480, 1991.

    Article  CAS  PubMed  Google Scholar 

  10. Baynes J.W.: Role of oxidative stress in development of complications in diabetes mellitus. Diabetes 40: 405–412, 1991.

    Article  CAS  PubMed  Google Scholar 

  11. Odetti P., Pronzato M.A., Noberasco G., Cosso L., Traverso N., Cottalasso D., Marinari U.M.: Relationships between glycation and oxidation related fluorescences in rat collagen during aging. Lab. Invest. 70: 61–67, 1994.

    CAS  PubMed  Google Scholar 

  12. Odetti P., Borgoglio A., De Pascale A., Rolandi R., Adezati L.: Prevention of diabetes-increased aging effect on rat collagen-linked fluorescence by aminoguanidine and rutin. Diabetes 39: 796–801, 1990.

    Article  CAS  PubMed  Google Scholar 

  13. Odetti P., Fogarty J., Sell D.R., Monnier V.M.: Chromatographic quantitation of plasma and erythrocyte pentosidine in diabetic and uremic subjects. Diabetes 41: 153–159, 1992.

    Article  CAS  PubMed  Google Scholar 

  14. DCCT Research group: The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med. 329: 977–986, 1993.

    Article  Google Scholar 

References

  1. Masoro E.J.: Aging: current concepts. In: Masoro E.J. (Ed.), Handbook of Physiology — Section: 11 — Aging. Oxford University Press, New York 1995, pp. 3–21.

    Google Scholar 

  2. Rattan S.I.S: Cellular and molecular determinants of aging. In: Abstract Book, Intervention in aging. V: Theories on aging and Advanced Summer School on Pathobiology of Aging, Pisa and Volterra, Italy, 1997, pp.11–12.

    Google Scholar 

  3. Traverso N., Odetti P., Pronzato M.A., U.M. Marinari, Cottalasso D.: Intensive insulin treatment reduces the accumulation of oxidation and glycation end-products in diabetic rat collagen. In: Abstract Book, Intervention in aging. V: Theories on aging and Advanced Summer School on Pathobiology of Aging, Pisa and Volterra, Italy, 1997, pp. 15–16.

    Google Scholar 

  4. Carroll K.K., Guthrie N., Ravi K.: Dolichol: function, metabolism, and accumulation in human tissues. Biochem. Cell Biol. 70: 382–384, 1992.

    Article  CAS  PubMed  Google Scholar 

  5. Miotto G., Venerando R., Marin O., Siliprandi N., Mortimore G.E.: Inhibition of macroautophagy and proteolysis in the isolated rat hepatocyte by a nontransportable derivative of the multiple antigen peptide Leu8-Lys4-Lys-betaAla. J. Biol. Chem. 269: 25348–25353, 1994.

    CAS  PubMed  Google Scholar 

  6. Maltese W.A., Erdman R.A.: Characterization of isoprenoid involved in the post-translational modification of mammalian cell proteins. J. Biol. Chem. 264: 18168–18172, 1989.

    CAS  PubMed  Google Scholar 

  7. Starke-Reed P.E., Oliver C.N.: Protein oxidation and proteolysis during aging and oxidative stress. Arch. Biochem. Biophys. 275: 559–567, 1989.

    Article  CAS  PubMed  Google Scholar 

  8. Bergamini E., Gori Z.: Towards an understanding of the antiaging mechanisms of dietary restriction: a signal transduction theory of aging. Aging Clin. Exp. Res. 7: 473–475, 1995.

    Article  Google Scholar 

References

  1. Gavrilov L.A., Gavrilova N.S.: The biology of life span: a quantitative approach. Harwood Academic Publisher, London, 1991, pp. 1–385.

    Google Scholar 

  2. Piantanelli L., Rossolini G., Basso A.: The concept of vitality heterogeneity in modelling the link between the rate of aging and the rate of mortality. In: Viidik A., Hofecker G. (Eds.), Vitality, Mortality and Aging. Facultas Universitatsverlag, Wien, 1996, pp. 327–336.

    Google Scholar 

  3. Piantanelli L., Rossolini G., Nisbet R.: Modelling survivorship kinetics: a two parameters model. Gerontology 38: 30–40, 1992.

    Article  CAS  PubMed  Google Scholar 

  4. Masoro E.J.: Dietary restriction. Exp. Gerontol. 30: 291–298, 1995.

    Article  CAS  PubMed  Google Scholar 

  5. Piantanelli L., Basso A., Rossolini G.: Modelling the link between aging rate and mortality rate. Ann. N. Y. Acad. Sci. 719: 136–145, 1994.

    Article  CAS  PubMed  Google Scholar 

  6. Piantanelli L., Rossolini G., Basso A.: Biomarkers of aging and survival kinetics. Ann. N. Y. Acad. Sci. 673: 9–15, 1992.

    Article  CAS  PubMed  Google Scholar 

  7. Piantanelli L.: Cancer and Aging: From the kinetics of biological parameters to the kinetics of cancer incidence and mortality. Ann. N. Y. Acad. Sci. 521: 99–109, 1988.

    Article  CAS  PubMed  Google Scholar 

  8. Piantanelli L.: A mathematical model of survivorship: From the kinetics of dying to the processes of aging. In: Dioguardi N. (Ed.), The Future of Science has begun: Mathematical and biological aspects of the aging processes. Fondazione Carlo Erba, Milano, 1995, pp. 93–120.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masoro, E.J., Pereira-Smith, O.M., Rattan, S.I.S. et al. Intervention in Aging. V: “Theories and models on aging”. Aging Clin Exp Res 9, 428–435 (1997). https://doi.org/10.1007/BF03339625

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03339625

Keywords

Navigation