Skip to main content
Log in

Metallurgical Surfaces Produced by Ion Implantation

  • Physical & Mechanical Metallurgy
  • Published:
JOM Aims and scope Submit manuscript

Summary

Ion implantation, the process of embedding ions accelerated through high voltages, is described as a metallurgical tool for altering surface microstructure and properties. Examples of applications to improve resistance to wear, oxidation, and corrosion are provided. The possibilities for producing surface “superalloys” is explored using Al+ ion implantation into nickel as a prototype alloy system. The micromechanisms which operate and determine implanted surface chemistry are presented, and a predictive capability is demonstrated. Factors determining the phases that are stable in implanted alloys are outlined and demonstrated using P+ and Al+ ion implantation of nickel. Future directions using ion implantation for metallurgical purposes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Dearnaley, “Practical Applications of Ion Implantation,” J. of Metals, 35(9) (1982), pp. 18–28.

    Google Scholar 

  2. N. E. W. Hartley, “Friction and Wear of Ion Implanted Metals — A. Review,” Thin Solid Films, 64 (1979), pp. 177–190.

    Article  Google Scholar 

  3. Y. F. Wang, C. R. Clayton, G. K. Hubler, W. H. Lucke, and J. K. Hirvonen, “Applications of Ion Implantation for the Improvement of Localized Corrosion Resistance of M50 Bearing Steel,” Thin Solid Films, 63 (1979), pp. 11–18.

    Article  Google Scholar 

  4. S. R. Shepard and N. P. Suh, “Effects of Ion Implantation on Friction and Wear of Metals,” J. Lubric Technology, 104 (1982), pp. 29–38.

    Article  Google Scholar 

  5. I. L. Singer, R. N. Bolster, and C. A. Carosella, “Abrasive Wear Resistance of Ti+ and Ni+ Implanted 52100 Steel Surfaces,” Thin Solid Films, 73 (1980), pp. 283–289.

    Article  Google Scholar 

  6. I. L. Singer, “Friction Behavior of 52100 Steel Modified by Ion Implanted Ti,” Nucl. Inst. and Methods, 182/183 (1981), pp. 923–932.

    Article  Google Scholar 

  7. J. A. Knapp, D. M. Follstaedt, and S. T. Picraux, “Amorphous Surface Layers in Ti-Implanted Fe,” pp. 152–161 in Ion Implantation Metallurgy, edited by C. M. Preece and J. K. Hirvonen, TMS-AIME, Warrendale, Pennsylvania, 1980.

    Google Scholar 

  8. W. A. Grant, “Ion-Implantation and Irradiation Studies Using Amorphous Metals,” Nucl. Inst. and Methods, 182/183 (1981), pp. 809–826. See also A. Ali, W. A. Grant, and P. J. Grundy, “Ion Implantation and Irradiation Studies Using Amorphous Metals,” Phil. Mag., B37 (1978), pp. 353–376.

    Article  Google Scholar 

  9. U. Bernabai, M. Cavallini, G. Bombara, G. Dearnaley, and M. Wilkins, “The Effects of Heat Treatment and Implantation of Aluminum on the Oxidation Resistance of Fe-Cr-Al-Y Alloys,” Corrosion Science, 20 (1980), pp. 19–25.

    Article  Google Scholar 

  10. G. Dearnaley, “The Alteration of Oxidation and Related Properties of Metals by Ion Implantation,” Nucl. Inst. and Methods, 182/183 (1981), pp. 899–914.

    Article  Google Scholar 

  11. J. R. Morris, R. A. Collins, and G. Dearnaley, “The Influence of Ion Implantation on the Thermal Oxidation of Copper,” J. Phys. F.: Metal Phys., 8(6) (1978), pp. 1333–1342.

    Article  Google Scholar 

  12. L. G. Svendsen, “A Comparison of the Corrosion Protection of Copper by Ion Implantation of Al and Cr,” Corrosion Science, 20 (1980), pp. 63–68.

    Article  Google Scholar 

  13. F. H. Stott, Zhou Peide, W. A. Grant, and R. P. M. Procter, “The Oxidation of Chromium and Nickel Implanted Nickel at High Temperatures,” Corrosion Science, 22 (1982), pp. 305–320.

    Article  Google Scholar 

  14. V. Ashworth, R. P. M. Procter, and W. A. Grant, “The Application of Ion Implantation to Aqueous Corrosion,” pp. 175–256 in Treatise on Materials Science and Technology, Vol. 18, Ion Implantation, edited by J. K. Hirvonen, Academic Press, New York, New York, 1980.

    Google Scholar 

  15. C. R. Clayton, “Modification of Metallic Corrosion by Ion Implantation,” Nucl. Inst. and Methods, 182/183 (1981), pp. 865–873.

    Article  Google Scholar 

  16. R. P. Walters, N. S. Wheeler, and B. D. Jartwell, “The Effects of Surface Modification on the Stress Corrosion Cracking Behavior of 316 Stainless Steel,” Corrosion NACE, 38(8) (1982), pp. 437–445.

    Article  Google Scholar 

  17. J. I. Pankove, J. T. McGinn, and C. P. Wu, “Bombardment Induced Corrosion Resistance of Aluminum,” Appl. Phys. Lett., 39(1) (1981), pp. 119–121.

    Article  Google Scholar 

  18. B. R. Appleton, E. J. Kelly, C. W. White, N. G. Thompson, and B. D. Lichter, “Evidence of Surface Migration and Formation of Catalytically ‘Inactive’ Pt in Corrosion Studies of Pt+ Implanted Ti,” Nucl. Inst. and Methods, 182/183 (1981), pp. 991–999.

    Article  Google Scholar 

  19. P. L. Bonora, M. Bassoli, G. Cerisola, P. L. DeAnna, S. Lo Russo, P. Mazzoldi, B. Tiveran, I. Scotoni, C. Tosello, and A. Bernard, “Electrochemical and Corrosion Behavior of Nitrogen and Boron Implanted Armco Iron,” Nucl. Inst. and Methods, 182/183 (1981), pp. 1001–1007.

    Article  Google Scholar 

  20. D. K. Brice, Ion Implantation Range and Energy Deposition Distributions, Plenum, New York, New York, 1975.

    Google Scholar 

  21. J. P. Biersack and L. G. Haggmark, “A Monte Carlo Computer Program for the Transport of Energetic Ions in Amorphous Targets,” Nucl. Inst. and Methods, 174 (1980), pp. 257–269.

    Article  Google Scholar 

  22. S. Lamond and D. Potter, “Ion Mass Effects on Bombardment — Induced Disordering of γ′-Ni3Si,” to appear in J. Nucl. Mater.

  23. Z. L. Liau and J. W. Mayer, “Ion Bombardment Effects on Material Composition,” pp. 17–50 in Treatise on Materials and Technology, Vol. 18, Ion Implantation, edited by J. K. Hirvonen, Academic Press, New York, New York, 1980.

    Google Scholar 

  24. H. Kräutle, “Model Calculations of Profiles and Dose of High Dose Ion Implants Influenced by Sputtering,” Nucl. Inst. and Methods, 134 (1976), pp. 167–172.

    Article  Google Scholar 

  25. D. Farkas, I. L. Singer, and M. Rangaswaney, “Computer Modeling of High Fluence Ti Implantation and Vacuum Carburization of Steel,” paper to be presented in session on Surface Modification Using Refractory Metals, TMS-AIME Fall Meeting, Philadelphia, Pennsylvania, 1983.

  26. Phase Stability During Irradiation, edited by J. R. Holland, L. K. Mansur, and D. I. Potter, TMS-AIME, Warrendale, Pennsylvania, 1981.

    Google Scholar 

  27. Phase Transformations During Irradiation, edited by F. V. Nolfi, Jr., Applied Science Pub. Ltd., London, England, 1983.

    Google Scholar 

  28. R. H. Zee and P. Wilkes, “The Radiation Induced Order-Disorder Transformation in Cu3Au,” Phil. Mag., A42(4) (1980), pp. 463–482.

    Article  Google Scholar 

  29. E. M. Schulson, “The Ordering and Disordering of Solid Solutions Under Irradiation,” J. Nucl. Mater., 83 (1979), pp. 239–264.

    Article  Google Scholar 

  30. D. I. Potter and O. Hernandez, “Ion-Bombardment-Induced Disordering of γ′-Ni3Si,” Acta. Met., 29 (1981), pp. 187–196.

    Article  Google Scholar 

  31. M. Ahmed and D. Potter, “Phase Transformation During UHV. Al+ ion Implantation of Nickel,” to be published.

  32. B. Cordts, M. Ahmed, and D. I. Potter, “Limiting Composition and Phase Transformation Resulting from Implanting Aluminum Into Nickel,” to be published in Nucl. Inst. and Methods (1983).

  33. J. Hirvonen, “Annealing Behavior of Ion-Implanted Nickel-Aluminum Alloy,” Appl. Phys., 23 (1980), pp. 349–354.

    Article  Google Scholar 

Download references

Authors

Additional information

Research supported by the National Science Foundation, Division of Materials Research, Metallurgy and Ceramics Program, through Grant DMR8006084.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potter, D.I., Ahmed, M. & Lamond, S. Metallurgical Surfaces Produced by Ion Implantation. JOM 35, 17–22 (1983). https://doi.org/10.1007/BF03338341

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03338341

Keywords

Navigation