Skip to main content
Log in

The Physical Metallurgy of HSLA Linepipe Steels—A Review

  • Physical & Mechanical Metallurgy
  • Published:
JOM Aims and scope Submit manuscript

Summary

The discovery of oil and natural gas in severe climate conditions such as arctic regions has resulted in more-demanding mechanical property requirements for high-strength linepipe steels. These steels should have higher strength and toughness as well as excellent weldability. New high-strength, low-alloy (HSLA) steels for linepipe have been developed from the laboratory to full-scale production with astonishing speed in the last decade. These steels can be divided into three categories based on the microstructure, namely, ferrite-pearlite steels, acicular ferrite or bainitic steels, and multiphase steels. The physical metallurgy of these steels is reviewed and discussed, with emphasis on processing, structure-property relationship, and response to the U-O-E pipe forming process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Proceedings of Conference on Steels for Line Pipe and Pipeline Fittings, preprint, the Metals Society, London, U.K. 1981.

  2. Microalloying’ 75, Proceedings, Union Carbide Corp., New York, New York, 1975.

  3. L. Meyer, F. Heisterkemp, and W. Mueschenborn, “Columbium, Titanium, and Vanadium in Normalized, Thermomechanically Treated, and Cold-Rolled Steels,” in Microalloying’ 75 Proceedings, Union Carbide Corp., New York, New York, 1975, p. 153.

    Google Scholar 

  4. M. J. White and W. Owen, Met. Trans., 11A (1980), p. 597.

    Article  Google Scholar 

  5. A. M. Sage, Metals Tech., 8 (1981) p. 94.

    Article  Google Scholar 

  6. N. K. Balliger and T. Gladman, Metal Science, 15 (1981), p. 95.

    Article  Google Scholar 

  7. V. J. Pogorzhelskyj, Y. J. Matrosov, and A. G. Nasibov, “Controlled Rolling of Microalloyed Steel,” in Microalloying’ 75 Proceedings, Union Carbide Corp., New York, New York, 1975, p. 100.

    Google Scholar 

  8. I. Kozasu, C. Ouchi, T. Sampei, and T. Okita, “Hot Rolling as a High-Temperature Thermo-Mechanical Process,” in Microalloying’ 75 Proceedings, Union Carbide Corp., New York, New York, 1975, p. 120.

    Google Scholar 

  9. T. Tanaka, N. Tabota, T. Hatomura, and C. Shiga, “Three Stages of the Controlled Rolling Process,” in Microalloying’ 75 Proceedings, Union Carbide Corp., New York, New York, 1975, p. 107.

    Google Scholar 

  10. J. J. Irani, D. Button, J. D. Jones, and A. B. Rothwell, Strong Tough Structural Steels, Iron and Steel Institute Publication no. 104, ISI, London, 1967, p. 110.

    Google Scholar 

  11. S. S. Hansen, J. B. Vander Sande, and M. Cohen, Met. Trans. 11A (1980), p. 387.

    Article  Google Scholar 

  12. I. Weiss and J. J. Jonas, Met. Trans. 11A (1980), p. 411.

    Google Scholar 

  13. M. J. Luton, R. Dorvel, and R. A. Petkovic, Met. Trans., 11A (1980), p. 411.

    Article  Google Scholar 

  14. P. L. Mangonon, Jr. and W. E. Heitmann, “Subgrain and Precipitation Strengthening Effects in Hot-Rolled Columbium-Bearing Steels,” in Microalloying’ 75 Proceedings, Union Carbide Corp., New York, New York, 1975, p. 59.

    Google Scholar 

  15. P. E. Repas, “Control of Strength and Toughness in Hot-Rolled Low-Carbon Manganese-Molybdenum-Columbium-Vanadium Steels,” in Microalloying’ 75 Proceedings, Union Carbide Corp., New York, New York, 1975, p. 387.

    Google Scholar 

  16. R. B. G. Yeo, A. G. Melville, P. E. Repas, and J. M. Gray, J. Metals, 20 (1968), p. 33.

    Google Scholar 

  17. T. Tanaka, T. Funakoshi, M. Ueda, J. Tsuboi, T. Yasuda, and C. Utahashi, “Development of High-strength Steel with Good Toughness at Arctic Temperatures for Large-Diameter Line Pipe,” in Microalloying’ 75 Proceedings, Union Carbide Corp., New York, New York, 1975, p. 399.

    Google Scholar 

  18. C. Shiga, T. Hatomura, J. Kudo, A. Kamada, K. Hirose, and T. Sekine, “Development of Large Diameter High Strength Line Pipes for Low Temperature Services,” Kawasaki Steel Technical Report, 4 (1981), p. 97.

    Google Scholar 

  19. H. Ohtani, T. Hashimoto, A. Ikeda, M. Nakanishi, T. Kyogoku, and K. Bessyo, “The Developments of High Strength Steels for X-70 to X-100 Grade Pipes,” Proceedings of Conference on Steels for Line Pipe and Pipeline Fittings, preprint, The Metals Society, London, U.K., 1981, paper 13.

    Google Scholar 

  20. H. Stuart, B. Bergmann, F. Heisterkamp, and L. Chaussy, “Developments in Niobium Steels for Linepipe Applications,” Proceedings of Conference on Steels for Line Pipe and Pipeline Fittings, preprint, The Metals Society, London, U.K., 1981, paper 17.

    Google Scholar 

  21. G. Tither and M. Lavite, J. Metals, 27 (1975), p. 15.

    Google Scholar 

  22. Y. E. Smith, A. P. Coldren, and R. L. Cryderman, “Manganese-Molybdenum-Niobium Acicular Ferrite Steels with High Strength and Toughness” in Towards Improved Ductility and Toughness, Climax Molybdenum Company, Kyoto, Japan, 1971, p. 119.

    Google Scholar 

  23. T. Terazawa, H. Higashiyama, and S. Sekino, “Low-Carbon Bainitic Steel with High Strength and Toughness”, Towards Improved Ductility and Toughness, Climax Molybdenum Company, Kyoto, Japan, 1971, p. 101.

    Google Scholar 

  24. H. Nakasugi, H. Matsuda and H. Tamehiro, “Ultra-Low Carbon Bainitic Steel for Line Pipes,” in Proceedings of Conference on Steels for Line Pipe and Pipeline Fittings, preprint, the Metals Society, London, U.K., 1981, paper 9.

    Google Scholar 

  25. A. Warren, H.S. Ubhi, and D. H. Jack, “The Relationship between Processing, Microstructure, and Properties in 0.45% V Steel for X70 Pipe Lines,” in Proceedings of Conference on Steels for Line Pipe and Pipeline Fittings, preprint, the Metals Society, London, U.K., 1981, paper 10.

    Google Scholar 

  26. C. Shiga, K. Amano, T. Hatomura, Y. Saito, K. Hirose, and T. Choji, “Ferrite-Fine Bainite Steel Linepipe of X70 and X80 Grades for Low Temperature Service,” Proceedings of Conference on Steels for Line Pipe and Pipeline Fittings, preprint, the Metals Society, London, U.K., 1981, paper 12.

    Google Scholar 

  27. A. M. Sage, R. Dewsnap, and D. McCutcheon, “The Properties of 0.45% Steel Pipe and the Effects of Some Variation in Composition,” in Proceedings of Conference on Steels for Line Pipe and Pipeline Fittings, preprint, the Metals Society, London, U.K., 1981, paper 15.

    Google Scholar 

  28. N. J. Kim, “Design of Dual Phase Fe/Mn/C Steel for Low Temperature Application,” University of California, Berkeley, California, LBL #12661, Ph.D. Thesis (1981).

    Book  Google Scholar 

  29. R. W. K. Honeycombe, Met. Trans., 7A (1976), p. 915.

    Article  Google Scholar 

  30. A. R. Carruthers, Engineering, 211(3) (1971), p. 325.

    Google Scholar 

  31. J. Bauschinger, Zivilingur, 27 (1881), p. 289.

    Google Scholar 

  32. T. Yamaguchi, “Relative Importance of Work Hardening and Bauschinger Effect on Strength during Pipe Forming,” in Microalloying’ 75, Proceedings, Union Carbide Corp., New York, New York, 1975, p. 352.

    Google Scholar 

  33. F. B. Pickering, “High-Strength, Low-Alloy Steels — A Decade of Progress,” Microalloying’ 75, Proceedings, Union Carbide Corp., New York, New York, 1975, p. 9.

    Google Scholar 

  34. F. B. Pickering, in Transformation and Hardenability in Steels, Climax Molybdenum Company, Ann Arbor, Michigan, 1967, p. 109.

    Google Scholar 

  35. M. Sudo, M. Higashi, H. Hori, T. Iwai, S. Kambe, and Z. Shibata, Trans. ISIJ, 28 (1981), p. 821.

    Google Scholar 

  36. E. Snape, Corrosion, 23 (1967), p. 154.

    Article  Google Scholar 

  37. A. P. Coldren and G. Tither, J. Metals, 28(5) (1976), p. 5.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, N.J. The Physical Metallurgy of HSLA Linepipe Steels—A Review. JOM 35, 21–27 (1983). https://doi.org/10.1007/BF03338239

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03338239

Keywords

Navigation