Skip to main content
Log in

Activated and Liquid-Phase Sintering—Progress and Problems

  • Physical & Mechanical Metallurgy
  • Published:
JOM Aims and scope Submit manuscript

Summary

Through activated and liquid-phase techniques, lower sintering temperatures or enhanced densification are possible. Metal powders treated with selected chemical additions can experience enhanced sintering through increased transport rates. It is believed the additives which are present as surface layers provide a short-circuit diffusion path for the host material. Criteria have been formulated for selecting second-phase elements and are reviewed in detail. A disadvantage of the accelerated densification rate is a significant loss in ductility in many systems. Current research efforts are seeking to identify second-phase sintering aids (liquid and solid) which are non-embrittling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. German and Z. A. Munir, “Activated Sintering of Refractory Metals by Transition Metal Additives,” Progress in Powder Met. Physical Ceram., 2, in press.

  2. K. S. Hwang and R. M. German, “High Density Ferrous Components by Activated Sintering,” in Processing of Metals and Ceramic Powders, edited by R. M. German and K. W. Lay, The Metallurgical Society of AIME, Warrendale, Pennsylvania, 1982, pp. 295–310.

    Google Scholar 

  3. W. F. Jandeska, “Activated Low Temperature Sintering of Iron Powder Structures,” Prog. Powder Met., 37 (1978), pp. 233–253.

    Google Scholar 

  4. J. Askill, Trace Diffusion Data for Metals, Alloys, and Simple Oxides, IFI, Plenum, New York.

  5. Z. A. Munir and R. M. German, “A Generalized Model for the Prediction of Periodic Trends in the Activation of Sintering of Refractory Metals,” High Tern. Science, 9 (1977), pp. 275–283.

    Google Scholar 

  6. V. Srikrishnan and P. Ficalora, “Diffusion in Transition Metals and Alloys,” Met. Trans., 6A (1975), pp. 2095–2101.

    Article  Google Scholar 

  7. L. Brewer, “Prediction of High Temperature Metallic Phase Diagrams,” in High Strength Materials, edited by V. F. Zackay, John Wiley & Sons, New York, 1965, pp. 12–103.

    Google Scholar 

  8. H. S. Cannon and F. V. Lenel, “Some Observations on the Mechanism of Liquid Phase Sintering,” in Proceedings First Plansee Seminar, edited by F. Benesovsley, Reutte, Austria, 1953, pp. 106–121.

  9. W. D. Kingery, “Densification During Sintering in the Presence of a Liquid Phase — I. Theory,” J. Appl. Phys., 30 (1959), pp. 301–306.

    Article  Google Scholar 

  10. V. N. Eremenko, Y. V. Naidich, and I. A. Lavrinenko, Liquid Phase Sintering, Consultants Bureau, New York, 1970.

    Book  Google Scholar 

  11. W. J. Huppman and R. Riegger, “Modeling of Rearrangement Processes in Liquid Phase Sintering,” Acta. Met., 23 (1975), pp. 965–971.

    Article  Google Scholar 

  12. I. H. Moon and W. J. Huppman, “Sintering Behavior of Tungsten-Silver Contact Materials with Cobalt Additions,” Powder Met. Inter., 6 (1974), pp. 190–194.

    Google Scholar 

  13. W. J. Huppman, “Sintering in the Presence of a Liquid Phase,” in Sintering and Catalysis, G. C. Kuczynski, Plenum, New York, 1975, pp. 359–378.

    Chapter  Google Scholar 

  14. J. J. Burton and E. S. Machlin, edited by “Prediction of Segregation to Alloy Surfaces from Bulk Phase Diagrams,” Phys. Rev. Letters, 37 (1976), pp. 1433–1436.

    Google Scholar 

  15. M. P. Seah, “Adsorption Induced Interface Cohesion,” Acta Met., 28 (1980), pp. 955–962.

    Article  Google Scholar 

  16. J. P. Stark and H. L. Marcus, “The Influence of Segregation on Grain Boundary Cohesion,” Met. Trans., 8A (1977), pp. 1423–1429.

    Article  Google Scholar 

  17. E. D. Hondros and M. P. Seah, “Segregation to Interfaces,” Inter. Metals Rev., 22 (1977), pp. 262–301.

    Article  Google Scholar 

  18. L. E. Toth and A. W. Searcy, “Activation Energies for Diffusion in Pure Metals and Concentrated Binary Alloys,” Trans. TMS-AIME, 22 (1977), pp. 262–301.

    Google Scholar 

  19. A. M. Brown and M. F. Ashby, “Correlations for Diffusion Constants,” Acta. Met., 28 (1980), pp. 1085–1101.

    Article  Google Scholar 

  20. B. H. Alexander and R. W. Balluffi, “The Mechanism of Sintering of Copper,” Acta. Met., 5 (1957), pp. 666–677.

    Article  Google Scholar 

  21. M. Astier, G. Brula, F. Lecomte, J. P. Reymond and P. Vergnon, “Influence of the Structure, Pressing, Atmosphere and Doping on the Sintering of Spherical Particles of Titanium Dioxide,” in Sintering—New Developments; Elsevier-Scientific, New York, New York 1980, pp. 150–159.

    Google Scholar 

  22. H. H. Hausner and R. King, “Effect of Powder Particle Size on the Grain Size of the Sintered Material,” in Iron Powder Metallurgy (Vol. 3 Perspectives in Powder Metallurgy), edited by H. H. Hausner, K. Roll, and P. Johnson, Plenum Press, New York, New York 1968, pp. 284–294.

    Google Scholar 

  23. C. Greskovich and K. W. Lay, “Grain Growth in Very Porous Al2O3 Compacts,” J. Am. Cer. Soc., 55 (1972), pp. 142–146.

    Article  Google Scholar 

  24. C. Lacou and M. Paulus, “Grain Size Dispersion and Sintering,” Phy. Sintering, 5 (1973), pp. 489–497.

    Google Scholar 

  25. H. Doremus, M. B. Thomas, I. Yasui, and M. Jarcho, “Sintering of Dense Hydroxylapatite,” in Ceramic Microstructures’ 76, edited by R. M. Fulroth and J. A. Pask, Westview Press, Boulder, Colorado, 1977, pp. 379–387.

    Google Scholar 

  26. H. Palmour, M. L. Huckabee, and T. M. Hare, “Microstructural Development During Optimized Rate Controlled Sintering,” in Ceramic Microstructures’ 76, edited by R. M. Fulroth and J. A. Pask, Westview Press, Boulder, Colorado, 1977, pp. 308–319.

    Google Scholar 

  27. M. L. Huckabee, T. M. Hare, and H. Palmour, “Rate Controlled Sintering as a Processing Method,” in Processing of Crystalline Ceramics, edited by H. Palmour et al., Plenum, New York, 1978, pp. 205–215.

    Chapter  Google Scholar 

  28. H. Palmour and D. R. Johnson, “Phenomenological Model for Rate Controlled Sintering,” in Sintering and Related Phenomena, edited by G. C. Kuczynski, N. A. Houton, and C. F. Gibbon, Gordon and Breach, New York, New York, 1967, pp. 779–791.

    Google Scholar 

  29. M. F. Ashby and R. M. A. Centamore, “The Dragging of Small Oxide Particles by Migrating Grain Boundaries in Copper,” Acta. Met., 16 (1968), pp. 1081–1092.

    Article  Google Scholar 

  30. G. C. Kuczynski and H. W. Lavendel, “Effects of Dispersed Oxide Particles Upon Sintering of Metallic Compacts,” Inter. J. Powder Met., 5(4) (1969), pp. 19–26.

    Google Scholar 

  31. A. Mocellin and W. D. Kinger, “Microstructural Changes During Heat-Treatment of Sintered A12O3,” J. Am. Cer. Soc., 56 (1973), pp. 309–314.

    Article  Google Scholar 

  32. F. V. Lenel, G. S. Ansell, and R. C. Morris, “Sintering of Loose Spherical Copper Powder Aggregates Using Silica as Markers,” Met. Trans., 1 (1970), pp. 2351–2354.

    Article  Google Scholar 

  33. M. J. Bannister, “Comments on ‘The Role of MgO in the Sintering of Alumina’,” J. Am. Cer. Soc., 63 (1980), pp. 229–230.

    Article  Google Scholar 

  34. C. W. Corti and P. Cptterill, “The Influence of Fine Alumina Particles on the Sintering Behavior and Grain Growth of Carbonyl Iron,” Powder Met. Inter., 6 (1974), pp. 23–25.

    Google Scholar 

  35. R. M. German and C. A. Lobombard, “Sintering Molybdenum Treated with Ni, Pd, and Pt,” Inter. J. of Powder Met. and Powder Tech., 18 (1982), pp. 147–156.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zovas, P.E., German, R.M., Hwang, K.S. et al. Activated and Liquid-Phase Sintering—Progress and Problems. JOM 35, 28–33 (1983). https://doi.org/10.1007/BF03338181

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03338181

Keywords

Navigation