Skip to main content
Log in

Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.)

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

Sites co-contaminated with organic and metal pollutants are common and considered to be a more complex problem as the two components often causes a synergistic effect on cytotoxicity. Phytoremediation has been proposed as a cost-effective technology for treating heavy metal or organic contamination and may be suitable for remediation of co-contaminated soil. This study investigated the concurrent removal of pyrene and cadmium in co-contaminated soil by growing maize in a pot experiment. At the end of 60 day culture, pyrene in spiked soil diminished significantly, accounting for 21–31 % of the initial extractable concentration in unplanted soil and 12–27 % in planted soil. With the increment of cadmium level, the residual pyrene both in unplanted and planted soil tended to increase. Although the presence of cadmium increased the accumulation of pyrene in maize, plant accumulation only account for less than 0.30 % of the total amount of the dissipated pyrene in vegetated soils. It implied that plant-promoted microbial biodegradation was the predominant contribution to the plant-enhanced dissipation of pyrene in co-contaminated soil. Unlike pyrene, heavy metal cadmium cannot be degraded. It was observed that maize can concurrently removed about on the average 0.70 % of the total cadmium amount in soil by plant uptake, but cadmium phytoextraction would be inhibited under contamination of pyrene. Maize CT38 can normally grow in the co-contaminated soil with high level cadmium and pyrene and can effectively remedy the sites co-contaminated with these two types of contamination, which suggest the possibility of simultaneous phytoremediation of two different contaminant types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baker, A. J. M.; McGrath, S. P.; Sidoli, C. M. D.; Reeves, R. D., (1994). The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour. Conserv. Recy., 11(1–4), 41–49 (9 pages).

    Article  Google Scholar 

  • Benin, A. L.; Sargent, J. D.; Dalton; M.; Roda, S., (1999). High concentrations of heavy metals in neighborhoods near ore smelters in northern Mexico. Environ. Health Persp., 107(4), 279–284 (6 pages).

    Article  CAS  Google Scholar 

  • Blaylock, M.; Salt, D. E.; Dushenkov, S.; Zakharova, O.; Kapulnik, Y.; Ensley, B. D, (1997). Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Tech. 31(3), 860–865 (6 pages).

    Article  Google Scholar 

  • Chekol, T.; Vough, L. R.; Chaney, R. L., (2004). Phytoremediation of polychlorinated biphenyl-contaminated soils: The rhizosphere effect. Environ. Int., 30(6), 799–804 (6 pages).

    Article  CAS  Google Scholar 

  • Cheng, S. P., (2003). Heavy metal pollution in China: Origin, pattern, and control. Environ. Sci. Pollut. Res., 10(3), 192–198 (7 pages).

    Article  CAS  Google Scholar 

  • Gao, Y. Z.; Zhu, L. Z., (2004). Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils. Chemosphere, 55(9), 1169–1178 (19 pages).

    Article  CAS  Google Scholar 

  • Garbisu, C.; Alkorta, I., (2001). Phytoextraction: A cost-effective plant-based technology for the removal of metals from the environment. Biores. Tech., 77(3), 229–236 (8 pages).

    Article  CAS  Google Scholar 

  • He, Y.; Xu, J. M.; Tang, C. X.; Wu, Y. P., (2005). Facilitation of pentachlorophenol degradation in the rhizophere of ryegrass (Loium perenne L.). Soil Biol. Biochem., 37(11), 2017–2024 (8 pages).

    Article  CAS  Google Scholar 

  • Kaimi, E.; Mukaidani, T.; Miyoshi, S.; Tamaki, M., (2006). Ryegrass enhancement of biodegradation in diesel-contaminated soil. Environ. Exp. Bot., 55(1–2), 110–119 (10 pages).

    Article  CAS  Google Scholar 

  • Kipopoulou, A. M.; Manoli, E.; Samara, C., (1999). Bioconcentration of PAHs in vegetables grown in an industrial area. Environ. Pollut., 106(3), 369–380 (12 pages).

    Article  CAS  Google Scholar 

  • Kuo, C. W.; Genthner, B. R. S., (1996). Effect of added heavy metal ions on biotransformation and biodegradation of 2-chlorophenol and 3-chlorobenzoate in anaerobic bacterial consortia. Appl. Environ. Microbiol., 62(7), 2317–2323 (7 pages).

    CAS  Google Scholar 

  • Lin, Q.; Wang, Z. W.; Ma, S.; Cheng, Y. X., (2006). Evaluation of dissipation mechanisms by Lolium perenne L. and Raphanus sativus for pentachlorophenol (PCP) in copper co-contaminated soil. Sci. Total Environ., 368(2–3), 814–822 (9 pages).

    Article  CAS  Google Scholar 

  • Lin, Q.; Shen, K. L.; Zhao, H. M.; Li, W. H., (2008). Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants. J. Hazard. Mater., 150(3), 515–521 (7 pages).

    Article  CAS  Google Scholar 

  • Ling, W. T.; Gao, Y. Z., (2004). Pomoted dissipation of phenanthrene and pyrene in soils by amaranth (Amaranthus tricolor L.). Environ. Geol., 46(5), 553–560 (8 pages).

    Article  CAS  Google Scholar 

  • Liste, H. H.; Alexander, M., (2000). Accumulation of phenanthrene and pyrene in rhizosphere soil. Chemosphere, 40(1), 11–14 (4 pages).

    Article  CAS  Google Scholar 

  • Lovley, D. R.; Coates, J. D., (1997). Bioremediation of metal contamination. Curr. Opin. Biotech., 8(3), 285–289 (5 pages).

    Article  CAS  Google Scholar 

  • Maslin, P.; Maier, R. M., (2000). Rhamnolipid-enhanced mineralization of phenanthrene in organic-metal co-contaminated soils. Bioremediat, J., 4(4), 295–308 (14 pages).

    Article  CAS  Google Scholar 

  • McGrath, S. P.; Zhao, F. J.; Lombi, E., (2001). Plant and rhizosphere processes involved in phytoremediation of metal contaminated soils., Plant Soil, 232(1–2), 207–214 (8 pages).

    Article  CAS  Google Scholar 

  • McIntyre, T.; Glennis, M. L., (1997). The advancement of phytoremediation as an innovative environmental technology for stabilization, remediation or restoration of contaminated sites in Canada: A discussion paper. J. Soil Contam., 6(3), 227–241 (15 pages).

    Article  CAS  Google Scholar 

  • Nakamura, T.; Motoyama, T.; Suzuki, Y.; Yamaguchi, I., (2004). Biotransformation of pentachlorophenol by Chinese chive and a recombinant derivative of its rhizosphere-competent microorganism, Pseudomonas gladioli M-2196. Soil Biol. Biochem., 36(5), 787–795 (9 pages).

    Article  CAS  Google Scholar 

  • Olson, P. E.; Wong, T.; Leigh, M. B.; Fletcher, J. S., (2003). Allometric modeling of plant root growth and its application in rhizosphere remediation of soil contaminants. Environ. Sci. Tech., 37(3), 638–643 (6 pages).

    Article  CAS  Google Scholar 

  • Pascale, M.; Raina, M. M., (2000). Rhamnolipid-enhanced mineralization of phenantheren in organic-metal co-contaminated soils. Bioremediat. J., 4(4), 295–308 (14 pages).

    Article  Google Scholar 

  • Polder, M. D.; Hulzebos, E. M.; Jager, D. T., (1995). Validation of models on uptake of organic chemicals by plant roots. Environ. Toxicol. Chem., 14(9), 1615–1623 (9 pages).

    Article  CAS  Google Scholar 

  • Said, W. A.; Lewis, D. L., (1991). Quantitative assessment of the effects of metals on microbial degradation of organic chemicals. Appl. Environ. Microbiol., 57(5), 1498–1503 (6 pages).

    CAS  Google Scholar 

  • Sandrin, T. R.; Maier, R. M., (2002). Effect of pH on cadmium toxicity, speciation, and accumulation during naphthalene biodegradation. Environ. Toxicol. Chem., 21(10), 2075–2079 (5 pages).

    Article  CAS  Google Scholar 

  • Schnoor, J. L.; Licht, L. A.; McCutcheon, S. C.; Wolfe, N. L.; Carreira, L. H., (1995). Phytoremediation of organic and nutrient contaminants. Environ. Sci. Tech., 29(7), 318–323 (6 pages).

    Google Scholar 

  • Schroll, R.; Bierling, B.; Cao, G.; Dorfler, U.; Lahaniati, M.; Langenbach, T.; Scheunert, I.; Winkler, R., (1994). Uptake pathways of organic chemicals from soil by agricultural plants. Chemosphere, 28(2), 297–303 (7 pages).

    Article  CAS  Google Scholar 

  • Tessier, A.; Campbell, P. G. C.; Bisson, M., (1979). Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem., 51(7), 844–850 (7 pages).

    Article  CAS  Google Scholar 

  • Trapp, S.; Matthies, M.; Scheunert, I.; Topp, E. M., (1990). Modeling the bioconcentration of organic chemicals in plants. Environ. Sci. Tech., 24(8), 1246–1252 (7 pages).

    Article  CAS  Google Scholar 

  • Zhang, H.; Dang, Z.; Yao, L. X., (2007). Eco-toxicologic effect of cadmium and pyrene combined and simplex pollution on soil microbe. J. Agro. Environ. Sci., 26(6), 2225–2230 (6 pages).

    CAS  Google Scholar 

  • Zhou, J. M.; Dang, Z.; Tao, X. Q.; Zhou, Y. Z., (2005). Influence of NTA on accumulation and subcellular distribution of copper and zinc in corn (Zea mays). Environ. Sci., 26(6), 127–131 (5 pages).

    CAS  Google Scholar 

  • Zhou, J. M.; Dang, Z.; Cai, M. F., (2007). Soil heavy metal pollution around the Dabaoshan mine, Guangdong province, China. Pedosphere, 17(5), 588–594 (7 pages).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Dang Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Dang, Z., Zheng, L.C. et al. Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.). Int. J. Environ. Sci. Technol. 6, 249–258 (2009). https://doi.org/10.1007/BF03327629

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03327629

Keywords

Navigation