Typha domingensis leaf powder for decontamination of aluminium, iron, zinc and lead: Biosorption kinetics and equilibrium modeling

  • N. T. Abdel-Ghani
  • A. K. Hegazy
  • G. A. El-ChaghabyEmail author


The present study explores the effectiveness of Typha domingensis leaf powder for simultaneous removal of aluminium, iron, zinc and lead ions from aqueous solution. Batch experiments were carried out in laboratory at room temperature and at initial ions concentrations simulating the concentrations of these cations in real wastewater samples. The sorption process was examined applying the first and second order kinetic mechanisms. The results were best described by the second order rate kinetics. The applicability of the three equilibrium isotherm models was investigated. The obtained data follow the three investigated isothermal models in the following order: Langmuir > Freundlich > Temkin, for all the studied metal ions. The infrared spectra of native and exhausted Typha leaf powder confirmed ions-biomass interactions responsible for sorption. The results showed that Typha domingensis leaf powder can easily be envisaged as a new low cost natural biosorbent for metal clean up operations in aquatic systems.


Batch experiments contact time infrared spectra isotherm models 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Ghani N. T.; El-Chaghaby, G. A., (2007). Influence of operating conditions on the removal of Cu, Zn, Cd and Pb ions from wastewater by adsorption. Int. J. Environ. Sci. Tech., 4(4), 451–456 (6 pages).CrossRefGoogle Scholar
  2. Abdel-Ghani, N. T.; El-Chaghaby, G. A., (2008). The use low cost, environmental friendly materials for the removal of heavy metals from aqueous solutions. Curr. World Environ., 3(1), 31–38 (8 pages).Google Scholar
  3. Abdel-Ghani, N. T.; Hefny, M.; El-Chaghaby, G. A. F., (2007). Removal of lead from aqueous solution using low-cost abundantly available adsorbents. Int. J. Environ. Sci. Tech., 4(1), 67–73 (7 pages).CrossRefGoogle Scholar
  4. Abdel-Ghani, N. T.; Hefny, M.; El-Chaghaby, G. A., (2008). Removal of metal ions from synthetic wastewater by adsorption onto Eucalyptus camaldulenis tree leaves. J. Chilean Chem. Soc., 53(3), 1585–1587 (3 pages).Google Scholar
  5. Al-Anber, Z. A.; Matouq, M. A. D., (2008). Batch adsorption of cadmium ions from aqueous solution by means of olive cake. J. Hazard. Mater., 151(1), 194–201 (8 pages).CrossRefGoogle Scholar
  6. Bayat, B., (2002). Combined removal of zinc (II) and cadmium (II) from aqueous solutions by adsorption onto high-calcium Turkish fly ash. Water Air Soil Poll. 136(1–4), 69–92 (24 pages).CrossRefGoogle Scholar
  7. Chakravarty, S.; Pimple, S.; Hema, S.; Chaturvedi, T.; Singh, S.; Gupta, K. K., (2009). Removal of copper from aqueous solution using newspaper pulp as an adsorbent. J. Hazard. Mater., 159(2–3), 396–403 (8 pages).Google Scholar
  8. Chandra S. K.; Kamala, C. T.; Chary, N. S.; Anjaneyulu, Y., (2003). Removal of heavy metals using a plant biomass with reference to environmental control. Int. J. Miner. Proc., 68(1–2), 37–45 (9 pages).CrossRefGoogle Scholar
  9. Donmez, G. C.; Aksu, Z.; Ozturk, A.; Kutsal, T., (1999). A comparative study on heavy metal biosorption characteristics of some algae. Proc. Bioch., 34(9), 885–892 (8 pages).CrossRefGoogle Scholar
  10. Ekmekyapar, F.; Aslan, A.; Kemal Bayhan, Y.; Cakici A., (2006). Biosorption of copper (II) by nonliving lichen biomass of Cladonia rangiformis hoffm. J. Hazard. Mater., B137, 293–298 (6 pages).CrossRefGoogle Scholar
  11. El-Ashtoukhy, E. S. Z.; Amin, N. K.; Abdelwahab, O., (2008). Removal of lead (II) and copper (II) from aqueous solutionusing pomegranate peel as a new adsorbent. Desalination, 223(1–3), 162–173 (12 pages).CrossRefGoogle Scholar
  12. Freundlich, H. M. F., (1906). Uber die adsorption in lösungen. Zeitschrift für Physikalische Chemie. 57, 385–470 (85 pages).Google Scholar
  13. Huamán Pino, G., Souza de Mesquita, L. M., Torem M. L.; Saavedra Pinto, G. A., (2006). Biosorption of cadmium by green coconut shell powder. Mine. Eng., 19(5), 380–387 (8 pages).CrossRefGoogle Scholar
  14. Gupta, G.; Torres, N., (1998). Use of fly ash in reducing toxicity of and heavy metals in wastewater effluent. J. Hazard. Mater. 57(1), 243–248 (6 pages).CrossRefGoogle Scholar
  15. Ho, Y. S.; McKay, G., (1999). Pseudo-second order model for sorption processes. Proc. Biochem., 34(5):451–465 (5 pages).CrossRefGoogle Scholar
  16. Horsfall, M. Jr.; Abia, A. A., (2003). Sorption of Cd(II) and Zn(II) ions from aqueous solutions by cassava waste biomass (Manihot sculenta Cranz). Water Res., 37(20), 4913–4923 (11 pages).CrossRefGoogle Scholar
  17. Horsfall, M. J.; Ogban, F. E.; Akporhonor, E. E., (2006). Recovery of lead and cadmium ions from metal-loaded biomass of wild cocoyam (Caladium bicolor) using acidic, basic and neutral eluent solutions. Electron. J. Biotech., 9(2), 152–156 (5 pages).CrossRefGoogle Scholar
  18. Ilharco, L. M.; Garcia, A. R.; Lopes da Silva, J.; Vieira Ferreira, L. F., (1997). Infrared approach to the study of adsorption on cellulose: Influence of cellulose crystallinity on the adsorption of benzophenone. Langmuir, 13(15), 4126–4132 (7 pages).CrossRefGoogle Scholar
  19. Kolasniski, K. W., (2001). Surface Science. Wiley, Chister, UK.Google Scholar
  20. Lagergren S., (1898). Zur theorie der sogenannten adsorption gelöster stoffe. Kungliga Svenska Vetenskapsakademiens. Handlingar, 24(4), 1–39 (39 pages).Google Scholar
  21. Langmuir, I., (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 40(9), 1361–1368 (8 pages).CrossRefGoogle Scholar
  22. Manal, F., (2007). Biosorption of cadmium and lead by phragmites Australis L. biomass using factorial experiment design. Global J. Biotech. Biochem., 2(1), 10–20 (11 pages).Google Scholar
  23. Matheickal, J. T.; Yu, Q.; Yin, P.; Kaewsarn, P., (1999). Heavy metal uptake capacities of common marine macro algal biomass. Water Res., 33(6), 1534–1537 (4 pages).CrossRefGoogle Scholar
  24. McKay, G.; Ho, Y. S.; Ng, J. C. Y., (1999). Biosorption of copper from wastewaters: A review. Separ. Purif. Method., 28(1), 87–125 (39 pages).CrossRefGoogle Scholar
  25. Pandey, P. K.; Verma, Y.; Choubey, Sh., Pandey, M.; Chandrasekhar, K., (2008). Biosorptive removal of cadmium from contaminated groundwater and industrial effluents. Bioresour. Tech., 99(10), 4420–4427 (8 pages).CrossRefGoogle Scholar
  26. Selatnia, A.; Boukazoula, A.; Kechid, N.; Bakhti, M. Z.; Chergui, A., (2004). Biosorption of Fe3+ from aqueous solution by a bacterial dead Streptomyces rimosus biomass. Proc. Biochem., 39(11), 1643–1651 (9 pages).CrossRefGoogle Scholar
  27. Singh, K. K.; Rastogi, R.; Hasan, S. H., (2005). Removal of cadmium from wastewater using agricultural waste rice polish. J. Hazard. Mater., 121(1–3), 51–58 (8 pages).CrossRefGoogle Scholar
  28. Veglio, F.; Beolchini, F., (1997). Removal of metals by biosorption: A review. Hydrometallurgy, 44(3), 301–316 (16 pages).CrossRefGoogle Scholar
  29. Webi T. W.; Chakravort, R. K., (1974). Pore and solid diffusion models for fixed bed adsorbents. J. Am. Inst. Chem. Eng., 20(2), 228–238 (11 pages).CrossRefGoogle Scholar
  30. Zafar, M. N.; Nadeem, R.; Hanif, M. A., (2007). Biosorption of nickel from protonated rice bran. J. Hazard. Mater., 143(1–2), 478–485 (8 pages).CrossRefGoogle Scholar

Copyright information

© Islamic Azad University 2009

Authors and Affiliations

  • N. T. Abdel-Ghani
    • 1
  • A. K. Hegazy
    • 2
  • G. A. El-Chaghaby
    • 3
    Email author
  1. 1.Chemistry Department, Faculty of ScienceCairo UniversityGizaEgypt
  2. 2.Botany Department, Faculty of ScienceCairo UniversityGizaEgypt
  3. 3.Agriculture Research CenterGizaEgypt

Personalised recommendations