Skip to main content
Log in

Pesticide transport and transformation modeling in soil column and groundwater contamination prediction

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

Pesticide transport and transformation were modeled in soil column from the soil surface to groundwater zone. A one dimensional dynamic mathematical and computer model is formulated to simulate two types of pesticides namely 2,4-dichlorophenoxy acetic acid and 1,2-dibromo 3-chloro propane in soil column. This model predicts the behavior and persistence of these pesticides in soil column and groundwater. The model is based on mass balance equation, including convective transport, dispersive transport and chemical adsorption in the phases such as solid, liquid and gas. The mathematical solution is obtained by finite difference implicit method. The model was verified with experimental measurements and also with analytical solution. The simulation results are in good agreement with measured values. The major findings of this research are the development of the model which can calculate and predict the concentration of pesticides in soil profiles, as well as groundwater after 4, 12, 31 days of pesticide application under steady state and unsteady water flow condition. With the results of this study, the distribution of various types of pesticides in soil column to groundwater table can be predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arias-Estevez, M.; Lopez-Periago, E.; Martinez-Carballo, E.; Simal-Gandara, J.; Mejuto, J. C.; Garcia-Rio, L., (2008). The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agr. Ecosyst. Environ., 123(4), 247–260 (14 pages).

    Article  CAS  Google Scholar 

  • Babich, H.; Davis, D. L.; Stotzky, G., (1981). Dibromochloropropane (DBCP): A review. Sci. Total Environ. 17(3), 207–221 (15 pages).

    Article  CAS  Google Scholar 

  • Bodaghpour, S.; Mirbagheri, S. A.; Hashemi Monfared, S. A., (2007). Introduction of a mathematical storage function model based on lumping process of infiltration theory. 2nd. IASME/WSEAS international conference on water resources, hydraulics and hydrology, Portoroz, Slovenia, 52–56 (5 pages).

  • Deeley, G. M.; Reinhard, M.; Stearns, S. M., (1991). Transformation and sorption of 1, 2-dibromo-3-chloropropane in subsurface samples collected at Fresno, California. J. Environ. Qual., 20(3), 547–556 (10 pages).

    Article  CAS  Google Scholar 

  • Huston, J. L.; Cass, A., (1987). A retentivity function for use in soil — water simulation models. J. Soil Sci., 38(1), 105–113 (9 pages).

    Article  Google Scholar 

  • Johnson, D. C.; Selim, H. M.; Ma, L.; Southwick, L. M; Willis, G. H., (1995). Movement of Atrazine and nitrate in sharkey clay soil: Evidence of preferential flow. Report No. 846. Louisiana State University Agricultural Center, Louisiana agricultural experimental station, Baton Rouge, Los Angeles, USA.

    Google Scholar 

  • Jury, W. A.; Spencer, W. F.; Farmer, W. J., (1983). Behavior assessment model for trace organics in soil: I. model description. J. Environ. Qual., 12(4), 558–564 (7 Pages).

    Article  CAS  Google Scholar 

  • Kah, M.; Brown, C. D., (2007). Changes in pesticide adsorption with time at high soil to solution ratios. Chemosphere, 68(7), 1335–1343 (9 pages).

    Article  CAS  Google Scholar 

  • Kalita, P. K.; Ward, A. D.; Kanwar, R. S.; McCoo, D. K., (1998). Simulation of pesticide concentrations in groundwater using Agricultural Drainage and Pesticide Transport (ADAPT) model. Agr. Water Manage., 36(1), 23–44 (22 pages).

    Article  Google Scholar 

  • Kloos, H., (1983). DBCP pesticide in drinking water wells in Fresno and other communities in the central valley of California. Ecol. Dis., 2(4), 353–367 (15 pages).

    CAS  Google Scholar 

  • Loague, K.; Bernknopf, R. L.; Green, R. E.; Giambelluca, T. W., (1996). Uncertainty of groundwater vulnerability assessments for agricultural regions in Hawaii: Review. J. Environ. Qual., 25(3), 475–490 (16 pages).

    Article  CAS  Google Scholar 

  • Loague, K.; Lloyd, D.; Nguyen, A.; Davis, S. N.; Abrams, R. H., (1998). A case study simulation of DBCP groundwater contamination in Fresno County, California 1. Leaching through the unsaturated subsurface. J. Contam. Hydrol., 29(2), 109–136 (28 pages).

    Article  CAS  Google Scholar 

  • McCreanor, P. T.; Reinhart, D. R., (2000). Mathematical modeling of leachate routing in a leachate recirculating landfill. Water Res., 34(4), 1285–1295 (11 pages).

    Article  CAS  Google Scholar 

  • Mirbagheri, S. A., (1995). Modeling contaminant transport in soil column and groundwater pollution control. Proceeding of regional conference on water recourse management, Isfahan University of Technology. August, 279–293.

  • Mirbagheri, S. A.; Kazemi Esfeh, H. R., (2008). Finite element modeling of leaching from a municipal landfill. J. Appl. Sci., 8(4), 629–635 (7 pages).

    Article  CAS  Google Scholar 

  • Mirbagheri, S. A.; Tanji, K. K.; Rajaee, T., (2008). Selenium transport and transformation modeling in soil columns and ground water contamination prediction. Hydrol. Proc., 22(14), 2475–2483 (9 pages).

    Article  CAS  Google Scholar 

  • Muller, T. S.; Sun, Z.; Kumar, M. P. G.; Itoh, K.; Murabayshi, M., (1998). The combination of photocatalysis and ozonolysis as a new approach for cleaning 2,4-dichlorophenoxyaceticacid polutted water. Chemosphere, 36(9), 2043–2055 (13 pages).

    Article  CAS  Google Scholar 

  • Oreskes, N.; Shrader-Frechette, K.; Belitz, K., (1994). Verification, validation and confirmation of numerical models in the earth sciences. Science, 263(5147), 641–646 (6 pages).

    Article  CAS  Google Scholar 

  • Qasim, S. R.; Burchinal, J. C., (1970). Leaching of pollutants from refuse beds. J. sanitary Eng. div., 96(1), 49–58 (10 pages).

    Google Scholar 

  • Rovers, F. A.; Farquhar, G. j., (1973). Infiltration and landfill behavior. J. Environ. Eng., 99(5), 671–690 (20 pages).

    CAS  Google Scholar 

  • Scholtz, M. T.; Bidleman, T. F., (2007). Modeling of the long-term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part II projected long-term fate of pesticide residues. Sci. Total Environ., 377(1), 61–80 (20 pages).

    Article  CAS  Google Scholar 

  • Stevenson, D. E.; Baumann, p.; Jackman, J. A., (1997). Pesticide properties that affect water quality. Texas agricultural extension service, B-6050.

  • Taube, J.; Vorkamp, K.; Forster, M.; Herrmann, R., (2002). Pesticide residues in biological waste. Chemosphere, 49(10), 1357–1365 (9 pages).

    Article  CAS  Google Scholar 

  • USDA, (2006), 2,4-D human health and ecological risk assessment, United States Department of Agriculture, Forest Service, Forest Health Protection, Final report, USDA Forest Service Rosslyn Plaza Building C, Room 7129C 1601, North Kent Street Arlington, VA 22209 September 30.

  • Vorkamp, K.; Taube, J.; Herrmann, R., (1997). Multiresidue analysis of pesticides and their metabolites in biological waste. In: Stentiford, E. I. (Ed.). Organic recovery and biological treatment, Zeebra Publishing, Manchester, 221–225 (5 pages).

    Google Scholar 

  • Vorkamp, K.; Taube, J.; Forster, M.; Kellner, E., Herrmann, R., (1999). Pesticides as an unknown component of biological waste and its products, in: Del Re, A. A. M. et al. (Eds). XI international symposium pesticide chemistry. Cremona, Italy, La Coliardica Pavese, 153–163.

    Google Scholar 

  • Wagenet, R. J.; Hutson, J. L., (1986). Predicting the fate of nonvolatile pesticides in unsaturated zone. J. Environ. Qual., 15(4), 315–322 (8 pages).

    Article  CAS  Google Scholar 

  • Wagenet, R. J.; Hutson, J. L., (1987). LEACHM: Leaching Estimation and Chemistry Model: A process based model of water and solute movement transportation, plant uptake and chemical reactions in unsaturated zone, continuum Vol. 2, Water Resources Institute, Cornell University, Ithaca, New York,USA.

  • Wagenet, R. J.; Huston, J. L.; Biggar, J. W., (1989). Simulating the fate of a volatile pesticide in unsaturated soil: A case study with DBCP. J. Environ. Qual., 18(1), 78–84 (7 pages).

    Article  CAS  Google Scholar 

  • Walsh, J. J.; Kinman, R. N., (1979). Leachate and gas production under controlled moisture conditions, municipal solid waste: Land disposal. Proceedings of the 5th. annual research symposium, EPA-600/9-79-023a, USEPA, Cincinnati, OH, 41–57 (17 pages).

  • Zbytniewski, R.; Buszewski, B., (2002). Sorption of pesticides in soil and compost. Pol. J. Environ. Stud., 11(2), 179–184 (6 pages).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Mirbagheri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirbagheri, S.A., Monfared, S.A.H. Pesticide transport and transformation modeling in soil column and groundwater contamination prediction. Int. J. Environ. Sci. Technol. 6, 233–242 (2009). https://doi.org/10.1007/BF03327627

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03327627

Keywords

Navigation