Skip to main content

Impact of various concentrations of crude oil on fungal populations of soil

Abstract

The effect of various concentrations of crude oil on fungal populations of soil was investigated for a period of 18 weeks using standard methods. Total fungal counts ranged from 26 to 143 χ 102 cfu/gsoil while counts of petroleum-utilizing fungi ranged from 2 to 102 χ 102 cfu/g soil. Analysis of variance and randomized complete block design of counts of total fungi and petroleum-utilizers showed high significant difference between the control and the oil treated soils at p⋜ 0.05 level. Counts of petroleum-utilizers expressed as a percentage of the corresponding total fungal count of the soils ranged from 4.7 % to 58.8 %. Species of fourteen fungal genera were isolated from the soils. These include Alternaria,Aspergillus, Candida, Cephalosporium, Cladosporium, Fusarium, Geotrichum, Mucor, Penicillium, Rhizopus, Rhodotolura, Saccharomyces, Torulopsis and Trichoderma. Of these, ten were petroleum-utilizers and were all isolated from the control and 1 % oil treated soils. Only seven genera were isolated from the 5 % oil treated soil out of which five genera were petroleum-utilizers in both the 3 % and 5 % treatment. The decreasing order of occurrence of a variety of fungal genera (fungal diversity) of both total fungi and petroleum-utilizers is 0 % (control) > 0.5 % > 1 % > 3 % > 5 %. This order of fungal diversity is a reverse of the decreasing order of fungal counts of these same soils. This showed that higher concentrations of crude oil has adverse effect on fungal diversity while enhancing the population of a fewer fungi.

This is a preview of subscription content, access via your institution.

References

  • Alexander, M., (1977). Introduction to soil microbiology. 2nd. Ed., John Wiley and Sons, Inc., New York, 467.

    Google Scholar 

  • Amadi, A.; Dickson, A. A.; Maate, G. O., (1993). Remediation of oil — polluted soils: 1. Effect of organic and inorganic nutrient supplements on the performance of maize (Zea mays L). Water, Air and Soil Pollut., 66(1–2), 59–76 (18 pages).

    Article  CAS  Google Scholar 

  • Amadi, A.; Abbey, S. D.; Nma, A., (1996). Chronic effects of oil spill on soil properties and microflora of a rainforest ecosystem in Nigeria. Water, Air, Soil Pollut., 86(1–4), 1–11 (11 pages).

    Article  CAS  Google Scholar 

  • Barnett, H. L.; Hunter, B. B., (1972). Illustrated Genera of Fungi Imperfecti. 3rd. Ed., Burgess Publication Co., Minneapolis.

    Google Scholar 

  • Clark, J. R.; Patrick, J. M. Jr., (1987). Toxicity of sediment-incorporated drilling fluids. Mar. Poll. Bull., 18(11), 600–603 (4 pages).

    Article  CAS  Google Scholar 

  • Colwell, R. R.; Walker, J. D., (1977). Ecological aspects of microbial degradation of pertroleum in the marine environment. Crit. Rev. Microbiol., 5(4), 423–445 (23 pages).

    Article  CAS  Google Scholar 

  • Gomez, K. A.; Gomez, A. A., (1984). Statistical procedures for agricultural research. 2nd. Ed., Singapore, John Wiley and Sons Inc., 680.

    Google Scholar 

  • Gordon, D. C. Jr.; Prouse, N. J., (1973). The effects of three oils on marine phytoplankton photosynthesis. Mar. Biol., 22(4), 329–333 (5 pages).

    Article  Google Scholar 

  • Harrigan, W. F.; McCance, M. E., (1990). Laboratory methods of food and diary microbiology. 8th Ed., Academic Press London, 452.

    Google Scholar 

  • Malloch, D., (1997). Moulds isolation, cultivation and identification. Department of Botany University of Toronto, Toronto, Canada.

    Google Scholar 

  • Margesin, R.; Schinner, F., (1997). Efficiency of indigenous and inoculated cold-adapted soil microorganisms for biodegradation of diesel oil in Alpine soil. Appl. Environ. Microbiol., 63(7), 2660–2664 (5 pages).

    CAS  Google Scholar 

  • McGill, W. B.; Nyborg, M., (1975). Reclamation of wet forest soils subjected to oil spills. Alberta Institute of Pedology, Canada, Publ. No. G-75-1.

  • McKinley, V. C.; Federle, J. W.; Bestal, J. R., (1982). Effects of petroleum hydrocarbons on plant litter microbiota in an Arctic lake. Appl. Environ. Microbiol., 43(1), 129–135 (7 pages).

    CAS  Google Scholar 

  • Mills, A. L.; Breuil, C.; Colwell, R. R., (1978). Enumeration of petroleum-degrading marine and estuarine microorganisms by the most-probable number. Can. J. Microbiol., 24(5), 552–557 (6 pages).

    Article  Google Scholar 

  • Mukala, R. A.; Lockwood, P. J.; Finnerty, W. R., (1975). Comparative analysis of the lipids of Acinetobacter species grown on hexadecane. J. Bacteriol., 12(1), 250–258 (9 pages).

    Google Scholar 

  • Mulkins-Phillips, G. J.; Stewart, J. E., (1974). Effects of environmental parameters on bacterial degradation of bunker crude oils and hydrocarbons. Appl. Microbiol., 28(6), 915–922 (8 pages).

    CAS  Google Scholar 

  • Nelson-Smith, A., (1973). Oil pollution and marine ecology. Plenum Press, New York.

    Book  Google Scholar 

  • Obire, O., (1988). Studies on the biodegradation potentials of some microorganisms isolated from water systems of two petroleum producing areas in Nigeria. Nig. J. Bot., 1, 81–90 (10 pages).

    Google Scholar 

  • Obire, O., (1990). Bacterial degradation of three different crude oils in Nigeria. Nig. J. Bot., 3, 93–103 (11 pages).

    Google Scholar 

  • Obire, O.; Nwaubeta, O., (2001). Biodegradation of refined petroleum hydrocarbons in Soil. J. Appl. Sci. Environ. Manag., 5(1), 43–46 (4 pages).

    Google Scholar 

  • Obire, O.; Nwaubeta, O., (2002). Effect of refined petroleum hydrocarbons on Soil physicochemical and bacteriological characteristics. J. Appl. Sci. Environ. Manage., 6(1), 39–44 (6 pages).

    Google Scholar 

  • Okpokwasili, G. C.; Amanchukwu, S. C., (1988). Petroleum hydrocarbon degradation by Candida species. Environ. Int., 14(3), 243–247 (5 pages).

    Article  CAS  Google Scholar 

  • Okpokwasili, G. C.; Okorie, B. B., (1988). Biodeterioration potentials of microorganisms isolated from car engine lubricating oil. Tribol. Int., 21(4), 215–220 (6 pages).

    Article  CAS  Google Scholar 

  • Paul, E. A.; Clark, F. E., (1988). Soil microbiology and biochemistry. Academic Press Inc., New York.

    Google Scholar 

  • Steinhart, J.; Steinhart, C., (1972). Blowout: A case study of the Santa Barbara oil spill. Hickel, W. J. Duxbury Press, California.

    Google Scholar 

  • Strand, J. A.; Templeton, W. L.; Lichatowich, J. A; Apts, C. W., (1971). Development of toxicity test procedures for marine phytoplankton, in: Proceedings of joint conference on prevention and control of oil spills. American Petroleum Institute. Washington DC, 279–286.

    Google Scholar 

  • Thijsee, G. J. E.; Van der Linden, A. C., (1961). Iso-alkane oxidation by a Pseudomonas. Antonie van Leuwenhoek., 27, 171–179 (9 pages).

    Article  Google Scholar 

  • Walker, J. D.; Colwell, R. R., (1976). Enumeration of petroleum-degrading microorganisms. Appl. Environ. Microbiol., 31(2), 198–207 (10 pages).

    CAS  Google Scholar 

  • World Bank, (1995). Defining an environmental development strategy for the Niger Delta. West Central Africa Department, World Bank, Washington DC, 150.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Obire Ph.D..

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Obire, O., Anyanwu, E.C. Impact of various concentrations of crude oil on fungal populations of soil. Int. J. Environ. Sci. Technol. 6, 211–218 (2009). https://doi.org/10.1007/BF03327624

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03327624

Keywords

  • Oil-treated soils
  • fungal diversity
  • petroleum-utilizers