Skip to main content
Log in

Comparison of field and model percentage drift using different types of hydraulic nozzles in pesticide applications

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

In pesticide applications, small droplets are desired for better coverage and uniform distribution. Yet, small droplets have a problem: Drift, the movement of droplets off-target. Low drift nozzle produces fewer drift-prone droplets, < 100 μm, compared to standard hydraulic nozzles. In pesticide applications, standard hydraulic nozzles, hollow cone and flat fan nozzles are generally used by farmers. These nozzles have broad droplet spectrum and high proportion drift-prone droplets. Sample of drifted droplets and measurements in field conditions are expensive and can be time-consuming. However, models can be applied to predict drift without field measurement. In this study, model and field measurement of percentage pesticide drift were compared using different hydraulic nozzles, D4-45, F 11006 and low drift 11003 by gas chromatography equipped with a nitrogen-phosphorus detector. In the result of this study, for all nozzles, values up to 2 m and 3 m showed that there were statistically different according to German model and Dutch model, respectively. In the result of this study, percentage drift at 5 m compared to 1 m distance decreased approximately 15 folds in low drift 11003, 12 in F 11006 and 10 folds in hollow cone D4-45 nozzles in actual application and 5 folds in German and 9 folds in Dutch models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ASAE S561.1, (2004). Procedure for measuring drift deposits from ground, orchard and aerial sprayers. American Society of Agricultural and Biological Engineers Michigan, USA. ASABE Standards, 433–435.

    Google Scholar 

  • ASAE S327.3, (2007). Terminology and definitions for application of crop, animal or forestry production and protection agents. American Society of Agricultural and Biological Engineers, Michigan, USA. ASABE Standards, 5.

    Google Scholar 

  • De Schampheleire, M.; Spanoghe, P.; Brusselmann, E.; Sonck, S., (2007). Risk assessment of pesticide spray drift damage in Belgium. Crop Prot., 26(4), 602–611 (10 pages).

    Article  Google Scholar 

  • Downer, R. A.; Hall, F. R., (1998). Chemistry and drift management: A biologist’s perspective. In north American conference on pesticide drift management, Maine, U.S.A. 187–195.

  • Duvnjak, V.; Miller, P. C. H., (1998). Wind tunnel studies of the spray drift from different design of hydraulic flat fan nozzle. In international conference on agricultural engineering AgEng, Oslo 98, 24–27 August, Norway. 722–723.

  • Epple, J.; Maguhn, J.; Spitzauer, P.; Kettrup, A., (2002). Input of pesticides by atmospheric deposition. Geoderma, 105(3–4), 327–349 (23 pages).

    Article  CAS  Google Scholar 

  • EPPO, (2003). Environmental risk assessment scheme for plant protection products. EPPO Bulletin, 33(1), 115–129 (15 pages).

    Article  Google Scholar 

  • Farooq, M.; Balachandar, R.; Wulfsohn, D.; Wolf, T. M., (2001). Agricultural sprays in cross-flow and drift. J. Agr. Eng. Res., 78(4), 347–358 (12 pages).

    Article  Google Scholar 

  • Gil, Y.; Sinfort, C., (2005). Emission of pesticides to the air during sprayer application: A bibliographic review. Atmos. Enviro., 39(28), 5183–5193 (11 pages).

    Article  CAS  Google Scholar 

  • Goering, C. E.; Bode, L. E.; Gebhardt, M. R., (1972). Mathematical modeling of spray droplet deceleration and evaporation. T. ASAE, 15(2), 220–225 (6 pages).

    Article  Google Scholar 

  • Holterman, H. J.; van de Zande, J. C.; Porskamp, H. A.; Huijmans, J. F. M., (1997). Modeling spray drift from boom sprayers. Comput. Electron. Agr., 19(1), 1–22 (22 pages).

    Article  Google Scholar 

  • Jones, J. E.; Hanks, J. E.; Wills, G. D., (2002). Effect of different nozzle types on drift and efficacy of Raindrop Ultra. Mississippi Agricultural and Foresty Experiment Station, 9.

  • Kawahara, J.; Horikoshi, R.; Yamaguchi, T.; Kumagai, K.; Yanagisawa, Y., (2005). Air pollution and young children’s inhalation exposure to organophosphorus pesticide in an agricultural community in Japan. Environ. Int., 31(8), 1123–1132 (10 pages).

    Article  CAS  Google Scholar 

  • Lardoux, Y.; Sinfort, C.; Enfalt, P.; Sevila, F., (2007). Test method for boom suspension influence on spray distribution, Part I: Experimental study of pesticide application under a moving boom. Biosystem. Eng., 96(1), 29–39 (11 pages).

    Article  Google Scholar 

  • Liu, Q.; Cooper, S. E.; Qi, L.; Fu, Z., (2006). Experimental study of droplet transport time between nozzles and target. Biosystem. Eng., 95(2), 151–157 (7 pages).

    Article  Google Scholar 

  • Matthews, G. A., (2000). Pesticide application methods. 3rd. Ed., Blackwell Science Ltd. UK.

    Book  Google Scholar 

  • Matthews, G. A.; Hamey, P. Y., (2003). Exposure of bystanders to pesticides. Outlook. Pest Manage., 14(5), 210–212 (3 pages).

    Article  CAS  Google Scholar 

  • Matthews, G. A., (2004). How was the pesticide applied? Crop Prot., 23(7), 651–653 (3 pages).

    Article  Google Scholar 

  • Miller, P. C. H., (1993). Spray drift and measurement. In: Matthews, G. A., Hislop, E.C. (Eds.), Application technology for crop protection. CAB International, Wallingford.

    Google Scholar 

  • Murphy, S. D.; Miller, P. C. H.; Parkin, C. S., (2000). The effect of boom section and nozzle configuration on the risk of spray drift. J. Agric. Eng. Res., 75(2), 127–137 (11 pages).

    Article  Google Scholar 

  • Ozkan, H. E.; Miralles, A.; Sinfort, C.; Zhu, H.; Reichard, D. L.; Fox, R. D., (1997). Effect of shielding spray boom on spray deposition. In: Goss, G. R., Hopkinson, M. J., Collins, H. M. (Eds.), Pesticide formulations and application systems. 17 ASTM, Ann Arbor.

    Google Scholar 

  • Pesticide Analytical Manual, (1999). U. S. Food and Drug Administration Center for Food Safety and Applied Nutrition Office of Plant and Dairy Foods and Beverages. Section 302. E1 extraction with acetone, liquid-liquid partitioning with petroleum ether/methylene chloride. 1

  • Pimentel, D., (1992). Pesticides and world food supply. ACS Symposium series-American Chemical Society, USA, 309.

    Google Scholar 

  • Pimentel, D., (2005). Environmental and economic costs of the application of pesticides primarily in the United States. Environ. Develop. Sustain., 7(2), 229–252 (24 pages).

    Article  Google Scholar 

  • Ravier, I.; Haouisee, E.; Clement, M.; Seux, R.; Briand, O., (2005). Field experiments for the evaluation of pesticide spray-drift on arable crops. Pest Manag. Sci., 61(8), 728–736 (9 pages).

    Article  CAS  Google Scholar 

  • Smith, D. B.; Bode, L. E.; Gerard, P. D., (2000). Predicting ground boom spray drift. T. ASAE, 43(3), 547–553 (7).

    Article  Google Scholar 

  • Smith, L. A.; Thomson, S. J., (2003). United States Department of Agriculture—Agricultural Research Service Research in application technology for pest management. Pest Manag. Sci., 59(6–7), 699–707 (9 pages).

    Article  CAS  Google Scholar 

  • Snoo, G. R.; Witt, P. J., (1998). Buffer zones for reducing pesticide drift to ditches and risks to aquatic organisms. Ecotox. Environ. Safe., 41(1), 112–118 (7 pages).

    Article  Google Scholar 

  • SPSS, (1993). SPSS for Windows: Release, 6.0. SPSS Inc., New York, U.S.A.

    Google Scholar 

  • The Pesticide Manual, (2003). 13th. Ed., British Crop Protection Council (BCPC), Hampshire.

  • Thompson, N.; Ley, A. J., (1983). Estimating spray drift using a random-walk model of evaporating drops. J. Agr. Eng. Res., 28(5), 419–435 (17 pages).

    Article  Google Scholar 

  • Uçar, T., (2000). Computational methods for pesticide drift assessment and mitigation strategies. In: 19th. National Congress on Agricultural Mechanization, Erzurum, Turkey, 190–196.

  • van de Zande, J. C.; Stallinga, H.; Michielsen, J. M. G. P.; van Velde, P., (2005). Effect of sprayer speed on spray drift. In Polish Academy of Sciences, Annual Review of Agricultural Engineering, Warsaw, 4–6 October, Poland, 129–142.

  • Wenneker, M.; Heijne, B.; van de Zande, J. C., (2005). Effect of air induction nozzle (coarse droplet), air assistance and one-sided spraying of the outer tree row on spray drift in orchard spraying. In Polish Academy of Sciences, Annual review of agricultural engineering, Warsaw, 4–6. October, Poland, 115–128.

  • Zhong, H.; Latham, M.; Hester, P. G.; Frommer, R. L.; Brock, C., (2003). Impact of naled on honey bee Apis mellifera L. survival and productivity: Aerial ULV application using a flat fan nozzle system. Arch. Environ. Con. Tox., 45(2), 216–220 (5 pages).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yarpuz-Bozdogan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yarpuz-Bozdogan, N., Bozdogan, A.M. Comparison of field and model percentage drift using different types of hydraulic nozzles in pesticide applications. Int. J. Environ. Sci. Technol. 6, 191–196 (2009). https://doi.org/10.1007/BF03327621

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03327621

Keywords

Navigation