Skip to main content
Log in

Decontamination of hexavalent chromium and tri-ethyl phosphate stimulants through photacatalytic oxidation

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

In this paper, the photocatalytic decontamination of hexavalent chromium and tri-ethyl phosphate, two important wastewater contaminants, are studied by the ultraviolet / nano-titanium dioxide process. The pH value and synergic effect between the oxidation of tri-ethyl phosphate and the reduction of hexavalent chromium were investigated in different concentrations of tri-ethyl phosphate and hexavalent chromium. Furthermore, the effects of ultraviolet and nano-titanium dioxide were investigated in a solution which contained tri-ethyl phosphate and hexavalent chromium. Results of adsorptions showed that hexavalent chromium was adsorbed better in acidic pH while the better adsorption for tri-ethyl phosphate was occurred in alkalinity pH. The reduction rate of hexavalent chromium was higher in acidic solutions while it was obtained at natural pH for tri-ethyl phosphate. In co-adsorption of hexavalent chromium and triethyl phosphate pollutants, tri-ethyl phosphate slightly increased adsorption of hexavalent chromium, but hexavalent chromium had no influence on the adsorption of tri-ethyl phosphate on nano-titanium dioxide particles. In contrast, triethyl phosphate has an improving effect on the reduction reaction rate of hexavalent chromium which increases with the interaction of the concentration of tri-ethyl phosphate in mixture. The same is true for the oxidation rate of tri-ethyl phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atafar Z, Mesdaghinia A, Nouri J, Homaee, M.; Yunesian, M., (2010). Effect of fertilizer application on soil heavy metal concentration. Environ. Monitor. Assess., 160(1–4), 83–89 (7 pages).

    Article  CAS  Google Scholar 

  • Ambashta, R. D.; Sillanpaa, M., (2010). Water purification using magnetic assistance: A review. J. Hazard. Mater., 180(1–3), 38–49 (12 pages).

    Article  CAS  Google Scholar 

  • Andreozzi, R.; Caprio, V.; Insola, A.; Marotta, R., (1999). Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today, 53(1), 51–59 (9 pages).

    Article  CAS  Google Scholar 

  • Bang, S.; Patel, M.; Lippincott, L.; Meng, X., (2005). Removal of arsenic from groundwater by granular titanium dioxide adsorbent. Chemosphere, 60(3), 389–397 (9 pages).

    Article  CAS  Google Scholar 

  • Chenthamarakshan, C. R.; Rajeshwar, K.; Wolfrum, E. J., (2000). Heterogeneous photocatalytic reduction of Cr(VI) in UV-iradiated titania suspensions: Effect of protons, ammonium ions, and other interfacial aspects. Langmuir, 16(6), 2715–2720 (6 pages).

    Article  CAS  Google Scholar 

  • Chirwa, E. N.; Wang, Y. T., (2000). Simultaneous chromium (VI) reduction and phenol degradation in an anaerobic consortium of bacteria. Water Res., 34(8), 2376–2384 (9 pages).

    Article  CAS  Google Scholar 

  • Colon, G.; Hidalgo, M. C.; Navyo, J.A., (2001). Influence of carboxylic acid on the photocatalytic reduction of Cr(VI) using commercial TiO2. Langmuir, 17(22), 7174–7177 (4 pages).

    Article  CAS  Google Scholar 

  • Doong, R. A.; Chang, W. H., (1997). Photoassisted titanium dioxide mediated degradation of organophosphorus pesticides by hydrogen peroxide. J. Photochem. Photobiol. A., 107(1–3), 239–244 (6 pages).

    Article  CAS  Google Scholar 

  • Gerven, T. V.; Mul, G.; Moulijn, J.; Stankiewicz, A., (2007). A review of intensification of photocatalytic process. Chem. Eng. Process, 46(9), 781–789 (9 pages).

    Article  Google Scholar 

  • Gharbani, P.; Khosravi, M.; Tabatabaei, S. M.; Zare, K.; Dastmalchi, S.; Mehrizad, A., (2010). Degradation of trace aqueous 4-chloro—nitrophenol occurring in pharmaceutical industrial wastewater by ozone. Int. J. Environ. Sci. Tech., 7(2), 377–384 (8 pages).

    CAS  Google Scholar 

  • Jiang, F.; Zheng, Z.; Xu, Z.; Zheng, S.; Guo, Z.; Chen, L., (2006). Aqueous Cr(VI) photo-reduction catalyzed by TiO2 and sulfated TiO2. J. Hazard. Mater., 134(1–3), 94–103 (10 pages).

    Article  CAS  Google Scholar 

  • Joseph, C. G.; Puma, G. L.; Bono, A.; Krishnaiah, D., (2009). Sonophotocatalysis in advanced oxidation process: A short review. Ultrason. Sonochem., 16(5), 583–589 (7 pages).

    Article  CAS  Google Scholar 

  • Kerzhentsev, M.; Guillard, C.; Herrmann, J. M.; Pichat, P., (1996). Photocatalytic pollutant removal in water at room temperature: case study of the total degradation of the insecticide fenitrothion (phosphorothioic acid O,O-dimethyl-O-(3-methyl-4-nitro-phenyl) ester). Catal. Today, 27(1–2), 215–220 ( 6 pages).

    Article  CAS  Google Scholar 

  • Khalil, L. B.; Mourad, W. E.; Rophael, M.W., (1998). Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination. Appl. Catal. B-Environ., 17(3), 267–273 (7pages).

    Article  CAS  Google Scholar 

  • Kim, C.; Zhou, Q.; Deng, B.; Thornton., E. C.; Xu, H., (2001). Chromium (VI) reduction by hydrogen sulfide in aqueous media: Stoichiometry and kinetics. Environ. Sci. Tech., 35(11), 2219–2225 (7 pages).

    Article  CAS  Google Scholar 

  • Kozlova, E. A.; Smirniotis, P. G.; Vorontsov, A.V., (2004). Comparative study on photocatalytic oxidation of four organophosphorus simulants of chemical warfare agents in aqueous suspension of titanium dioxide. J. Photochem. Photobio. A., 162(2–3), 503–511 (9 pages).

    Article  CAS  Google Scholar 

  • Ku, Y.; Jung, I. L., (2001). Photocatalytic reduction of Cr (VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res., 35(1), 135–142 (8 pages).

    Article  CAS  Google Scholar 

  • Malato, S.; Blanco, J.; Fernandez-Alba, A. R.; Aguera, A., (2000). Solar photocatalytic mineralization of commercial pesticides: acrinathrin. Chemosphere, 40(4), 403–409 (7 pages).

    Article  CAS  Google Scholar 

  • Nouri, J.; Lorestani, B.; Yousefi, N.; Khorasani, N.; Hasani, A. H.; Seif, S.; Cheraghi, M., (2011). Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead-zinc mine (Hamedan, Iran). Environ. Earth Sci., 62(3), 639–644 (6 pages).

    Article  CAS  Google Scholar 

  • Percherancier, J. P.; Chapelon, R.; Pouyet, B., (1995). Semiconductor-sensitized photodegradation of pesticides in water: the case of carbetamide. J. Photochem. Photobiol. A., 87(3), 261–266 (6 pages).

    Article  CAS  Google Scholar 

  • Sun, B.; Vorontsov, A.V.; Smirniotis, P. G., (2011). Parametric studies of diethyl phosphoramidate photocatalytic decomposition over TiO2. J. Hazard. Mater., 186(2–3), 1147–1153 (7 pages).

    Article  CAS  Google Scholar 

  • Siemon, U.; Bahnemann, D.; Testa, J. J.; Rodriguez, D.; Litter, M. I.; Bruno, N.,(2002). Heterogeneous photocatalytic reactions comparing TiO2 and Pt/TiO2. J. Photochem. Photobiol. A: Chem., 148(1–3), 247–255 (9 pages).

    Article  CAS  Google Scholar 

  • Thiruvenkatachari, R.; Vigneswaran, R.; Moon, S., (2008). A review on UV/TiO2 photocatalytic oxidation process. Korean J. Chem. Eng., 25(1), 64–72 (9 pages).

    Article  CAS  Google Scholar 

  • Tompsett G. A.; Bowmaker G. A.; Cooney R. P.; Metson J. B.; Rogers K. A., Seakins J. M., (1995). The raman spectrum of brookite TiO2. J. Raman Spectrosc., 26(1), 57–62 (6 pages).

    Article  CAS  Google Scholar 

  • Uyguner, C. S.; Bekbolet, M., (2004). Evaluation of humic acid, chromium (VI) and TiO2 ternary system in relation to adsorptive interactions. Appl. Catal. B-Environ., 49, 267–275 (9 pages).

    Article  CAS  Google Scholar 

  • Wang, L.; Wang, N.; Zhu, L.; Yu, H.; Tang, H., (2008). Photocatalytic reduction of Cr(VI) over different TiO2 photocatalysts and the effects of dissolved organic species. J. Hazard. Mater., 152(1), 93–99 (7 pages).

    Article  CAS  Google Scholar 

  • Xu, X. R.; Li, H. B.; Gu, J. D., (2006). Simultaneous decontamination of hexavalent chromium and methyl tert -butyl ether by UV/TiO2 Process. Chemosphere, 63(2), 254–260 (7 pages).

    Article  CAS  Google Scholar 

  • Wuana, R. A.; Okieimen, F. E.; Imborvungu, J. A., (2010). Removal of heavy metals from a contaminated soil using chelating organic acids. Int. J. Environ. Sci. Tech., 7(3), 485–496 (12 pages).

    CAS  Google Scholar 

  • Zhang, H. Z.; Banfield, J. F., (2000). Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J. Phys. Chem. B., 104(15), 3481–3487 (7 pages).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Aroujalian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fathizadeh, M., Fakhraee, H. & Aroujalian, A. Decontamination of hexavalent chromium and tri-ethyl phosphate stimulants through photacatalytic oxidation. Int. J. Environ. Sci. Technol. 8, 863–871 (2011). https://doi.org/10.1007/BF03326269

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326269

Keywords

Navigation