Skip to main content
Log in

Comparative plant growth promoting traits and distribution of rhizobacteria associated with heavy metals in contaminated soils

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

The heavy metals at high concentration are generally toxic to the plants for their metabolism and growth; therefore, interactions among metals, rhizosphere microbes and plants have attracted attention because of the biotechnological potential of microorganisms for metal removal directly from contaminated soils or the possible transference of them to the plants. The aim of this study was to compare the relationships between the physiological in vitro characteristics of rhizobacteria isolated from plant metal accumulators and their distribution relating with the heavy metals content in contaminated soils. The results of this study showed that the heavy metals present in the rhizosphere of the plant species analyzed, decrease the microbial biomass and content of heavy metals caused a different distribution of rhizobacteria found. Gram negative rhizobacteria (90 %) and gram positive rhizobacteria (10 %) were isolated; all of them are metal-resistant rhizobacteria and 50 % of the isolated rhizobacteria possess both traits: higher indol acetic acid and siderophore producers. The inoculation with these rhizosphere microorganisms that possess metal-tolerating ability and plant growth promoting activities, can be recommended with a practical importance for both metal-contaminated environment and plant growth promotion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abaye, D. A.; Lawlor, K.; Hirsch, P. R.; Brookes, P. C., (2005). Changes in the microbial community of an arable soil caused by long-term metal contamination. Eur. J. Soil Sci., 56(1), 93–102 (10 pages).

    Article  CAS  Google Scholar 

  • Abou-Shanab, R. A.; Angle, J. S.; Delorme, T. A.; Chaney, R. L.; van Berkum, P.; Moawad, H.; Ghanem, K.; Ghozlan, H. A., (2003). Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale, New Phytol., 158(1), 219–224 (6 pages).

    Article  CAS  Google Scholar 

  • Aceves, J., (2003). GraphPad Software. GraphPad InStat, V2.03

  • Ahmad, F.; Ahmad, I.; Khan, M. S., (2005). Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent Pseudomonas in the presence and absence of tryptophan. Turk. J. Biol., 29(1), 29–34 (6 pages).

    CAS  Google Scholar 

  • Ahmad, F.; Ahmad, I.; Khan, M. S., (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res., 163(2), 173–181 (9 pages).

    Article  CAS  Google Scholar 

  • Allers, T.; Lichen, M., (2000). A method for preparing genomic DNA that restrains branch migration of Holiday junctions. Nucl. Aci. Res., 28(2), 26–36 (11 pages).

    Article  Google Scholar 

  • Barazani, O. Z.; Friedman, J., (1999). Is IAA the major root growth factor secreted from plant-growth-mediating bacteria. J. Chem. Ecol., 25(10), 2397–2406 (10 pages).

    Article  CAS  Google Scholar 

  • Belimov, A. A.; Hontzeas, N.; Safronova, V. I.; Demchinskaya, S. V.; Piluzza, G.; Bullitta, S.; Glick, B. R., (2005). Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea LCzern.). Soil Biol. Biochem., 37(2), 241–250 (10 pages).

    Article  CAS  Google Scholar 

  • Black, R. C.; Choate, D. M.; Bardhan, S.; Revis, N.; Barton, L. L.; Zocco, T. G., (1993). Chemical transformation of toxic metals by a Pseudomonas strain from a toxic waste site. Environ. Toxicol. Chem., 12(8), 1365–1376 (12 pages).

    Google Scholar 

  • Bremer, P.J.; Geasey, G.G., (1993). Interactions of bacteria with metals in the aquatic environment. in: Rao, S.S. (Ed.), Particulate Matter and Aquatic Contaminants. Lewis Publishers, Boca Raton.

    Google Scholar 

  • Bric, J. M.; Bostock, R. M.; Silversone, S. E., (1991). Rapid in situ assay for indole acetic acid production by bacteria immobilization on a nitrocellulose membrane. Appl. Environ. Microbiol., 57(2), 535–538 (4 pages).

    CAS  Google Scholar 

  • Burd, G. I.; Dixon, D. G.; Glick. B. R., (1998). A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl. Environ. Microbiol., 64(10), 3663–3668 (6 pages).

    CAS  Google Scholar 

  • Burd G. I.; Dixon, D. G.; Glick. B. R., (2000). Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can. J. Microbiol., 46(3), 237–245 (9 pages).

    Article  CAS  Google Scholar 

  • Churchill, S. A.; Walters, J. V.; Churchill, P. F., (1995). Sorption of heavy metals by prepared bacterial cell surfaces. J. Environ. Eng., 121(10), 706–711 (6 pages).

    Article  CAS  Google Scholar 

  • Clarke, S. E.; Stuart, J.; Sandersloehr, J., (1987). Induction of siderophore activity in Anabaena species and its moderation of copper toxicity. Appl. Environ. Microbiol., 53(5), 917–922 (6 pages).

    CAS  Google Scholar 

  • Dell’ Amico, H.; Cavalca, L.; Andreoni, V., (2005). Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS. Microbiol. Ecol., 52(2), 153–162 (10 pages).

    Article  Google Scholar 

  • Dell’Amico, H.; Cavalca, L.; Andreoni, V., (2008). Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol. Biochem., 40(1), 74–84 (11 pages).

    Article  Google Scholar 

  • De Souza, M. P.; Huang, C. P. A.; Chee, N.; Terry, N., (1999). Rhizosphere bacteria enhance that accumulation of selenium and mercury in wetland plants. Planta, 209(2), 259–263 (5 pages).

    Article  Google Scholar 

  • Egamberdiyeva, D.; Hoflich, G., (2004). Effect of plant growth-promoting bacteria on growth and nutrient uptake of cotton and pea in a semi-arid region of Uzbekistan. J. Arid Environ., 56(2), 293–301 (9 pages).

    Article  Google Scholar 

  • Epelde L.; Becerril, J. M.; Barrutia, O.; González-Oreja, J. A.; Garbisu, C., (2010). Interactions between plant and rhizosphere microbial communities in a metalliferous soil. Environ. Poll., 158(5), 1576–1583 (8 pages).

    Article  CAS  Google Scholar 

  • Erbe, J. L.; Taylor, K. B.; Hall, L. M., (1995). Metalloregulation of the cyanobacterial smt locus: identification of the smtB binding sites and direct interaction with metals. Nucl. Acid Res., 23(13), 2472–2478 (7 pages).

    Article  CAS  Google Scholar 

  • Franco-Hernández, M. O.; Vásquez-Murrieta, M. S.; Patiño-Siciliano, A.; Dendooven, L., (2010). Heavy metals concentration in plants growing on mine tailings in Central Mexico. Bioresour. Tech., 101(11), 3864–3869 (6 pages).

    Article  Google Scholar 

  • Frostegård, A.; Tunlid, A.; Bååth, E., (1993). Phospholipid fatty acid composition, biomass and activity of microbial communities from two soil types experimentally exposed to different heavy metals. Appl. Environ. Microbiol., 59(11), 3605–3617 (13 pages).

    Google Scholar 

  • Gadd, G. M., (1990). Heavy metal accumulation by bacteria and other microorganisms. Experientia, 46(8), 834–840 (7 pages).

    Article  CAS  Google Scholar 

  • Glick, B. R.; Penrose, D. M.; Li, J., (1998). A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J. Theor. Biol., 190(1), 63–68 (6 pages).

    Article  CAS  Google Scholar 

  • Glick, B. R., (2003). Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotech. Adv., 21(5), 383–393 (11 pages).

    Article  CAS  Google Scholar 

  • Guo, L.; Andrews, J.; Riding, R.; Dennis, P.; Dresser, Q., (1996). Possible microbial effects on stable carbon isotopes in hot-spring travertines. J. Sediment. Res., 66(3), 468–473 (6 pages).

    Article  CAS  Google Scholar 

  • Idris, R.; Trifonova, M.; Puschenreiter, W.; Wenzel, W.; Sessitsch, A., (2004). Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl. Environ. Microbiol., 70(5), 2667–2677 (11 pages).

    Article  CAS  Google Scholar 

  • Khalid, A.; Arshad, M.; Zahir, Z. A., (2004). Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J. Appl. Microbiol., 96(3), 473–480 (8 pages).

    Article  CAS  Google Scholar 

  • Khan, A. G., (2005). Role of soil microbes in the rhizosphere of plants growing on trace metal contaminated soils in phytoremediation. J. Trace Elem. Med. Biol., 18(4), 355–364 (10 pages).

    Article  CAS  Google Scholar 

  • Li, J.; Zu, J.; Tang, C.; Wu, J.; Muhammad, A.; Wang, H., (2005). Application of 16S rDNA PCR amplification and DDGE fingerprinting for detection of shift in microbial community diversity in Cu, Zn and Cd contaminated paddy soils. Chemosphere, 62(8), 1375–1380 (6 pages).

    Google Scholar 

  • Ma, Y.; Rajkumar, M.; Freitas, H., (2009). Improvement of plant growth and nickel uptake by nickel resistant-plant-growth promoting bacteria. J. Hazard. Mater., 166(2–3), 1154–1161 (8 pages).

    Article  CAS  Google Scholar 

  • Mantelin, S.; Touraine, B., (2004). Plant growth-promoting bacteria and nitrate availability: impacts on root development and nitrate uptake. J. Exp. Bot., 55(394), 27–34 (8 pages).

    Article  CAS  Google Scholar 

  • Nouri, J.; Lorestani, B.; Yousefi, N.; Khorasani, N.; Hasani, A. H.; Seif, S.; Cheraghi, M., (2011). Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead-zinc mine (Hamedan, Iran). Environ. Earth Sci., 62(3), 639–644 (6 pages).

    Article  CAS  Google Scholar 

  • Piotrowska-Seget, Z.; Cycon, M.; Kozdroj, J., (2005). Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil. Appl. Soil Ecol., 28(3), 237–246 (10 pages).

    Article  Google Scholar 

  • Ramsey, P. W.; Rillig, M. C.; Feris, K. P.; Gordon, N. S.; Moore, J. N.; Holben, W. E.; Gannon, J. E., (2005). Relationship between communities and processes; newinsights froma field study of a contaminated ecosystem. Ecol. Lett., 8(11), 1201–1210 (10 pages).

    Article  Google Scholar 

  • Rau, N.; Mishra, V.; Sharma, M.; Das, M.; Ahaluwalia, K.; Sharma, R. S., (2009). Evaluation of functional diversity in rhizobacterial taxa of a wild grass (Saccharum ravennae) colonizing abandoned fly ash dumps in Delhi urban ecosystem. Soil. Biol. Biochem., 41(4), 813–821 (9 pages).

    Article  CAS  Google Scholar 

  • Rohlf, J., (2004). NTSYS-PC Version 2.11T. Numerical Taxonomy and Multivariate Analysis System. Applied Bioestastistics, Inc.

  • Schwyn, B.; Neilands, J. B., (1987). Universal chemical assay for the detection and determination of siderophores. Analys. Biochem., 160(1), 47–56 (10 pages).

    Article  CAS  Google Scholar 

  • Sharma, M.; Rau, N.; Mishra, V.; Sharma, R. S., (2005). Unexplored ecological significance of Saccharum munja. Species, 43, 22 (1 pages).

    Google Scholar 

  • Phage specificity and lipopolysaccharides of stem- and root-nodulating bacteria (Azorhizobium caulinodans, Sinorhizobium spp., and Rhizobium spp.) of Sesbania spp. Arch. Microbiol., 189(4), 411–418 (8 pages).

    Article  CAS  Google Scholar 

  • Sheng, X. F.; Xia, J. J., (2006). Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria. Chemosphere, 64(6), 1036–1042 (7 pages).

    Article  CAS  Google Scholar 

  • Sheng, F. X.; Xia, J. J.; Jiang, Ch.Y.; He, L. Y.; Qian, M., (2008). Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ. Poll., 156(3), 1164–1170 (7 pages).

    Article  CAS  Google Scholar 

  • Sneath, P. H. A.; Sokal, R. R., (1973). Numerical Taxonomy: the principles and practice of numerical classification. Freeman, San Francisco.

    Google Scholar 

  • Vásquez-Murrieta, M. S.; Migueles-Garduño, I.; Franco-Hernández, O.; Govaerts, B.; Dendooven, L., (2006). C and N mineralization and microbial biomass in heavy metal-contaminated soil. Eur. J. Soil, Biol., 42(2), 89–98 (10 pages).

    Article  Google Scholar 

  • Wardle, D. A.; Bonner, K. I.; Barker, G. M.; Yeates, G. W.; Nicholson, K. S.; Bardgett, R. D.; Watson, R. N.; Ghani, A., (1999). Plant removals in perennial grassland: vegetation dynamics, decomposers, soil biodiversity, and ecosystem properties. Ecol. Monogr., 69(4), 535–568 (33 pages).

    Article  Google Scholar 

  • Weisburg, W. G.; Barns, S. M.; Pelletier, D. A.; Lane, D. J., (1991). 16Ribosomal DNA amplification for phylogenetic study. J. Bacteriol., 173(2), 697–703 (7 pages).

    CAS  Google Scholar 

  • Wenzel, W. W.; Lombi, E.; Adriano, D. C., (1999). Biogeochemical processes in the rhizosphere: role in phytoremediation of metal-polluted sites. in: Prasad, M.N.V., Hagemeyer, J. (Eds.), Heavy Metal Stress in Plants: from Molecules to Ecosystems. Springer, Heidelberg, Berlin, New Yo

    Google Scholar 

  • Whiting, S. N.; De Souza, M. P.; Terry, N., (2001). Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ. Sci. Tech., 35(15), 3144–3150 (7 pages).

    Article  CAS  Google Scholar 

  • Wong, M. H., (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50(6), 775–780 (6 pages).

    Article  CAS  Google Scholar 

  • Wu, S. C.; Cao, Z. H.; Li, Z. G.; Cheung, K. C.; Wong, M. H., (2005). Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma, 125(1–2), 155–166 (12 pages).

    Article  Google Scholar 

  • Wu S.C.; Peng, X. L.; Cheung, K. C.; Liu, S. L.; Wong, M. H., (2009). Adsorption kinetics of Pb and Cd by two plant growth promoting rhizobacteria. Bioresour. Tech., 100(20), 4559–4563 (5 pages).

    Article  CAS  Google Scholar 

  • Young, K. D., (2006). The selective value of bacterial shape. Microbiol. Mol. Biol. R., 70(3), 660–703 (44 pages).

    Article  Google Scholar 

  • Zaidi, S.; Usmami, S.; Singh, B. R.; Musarrat, J., (2006). Significancce of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant grown promotion and nickel accumulation in Brassica juncea. Chemosphere, 64(6), 991–997 (7 pages).

    Article  CAS  Google Scholar 

  • Zhuang, X.; Chen, J.; Shim, H.; Bai, Z., (2007). New advances in plant growth promoting rhizobacteria for bioremediation. Environ. Int., 33(3), 406–413 (8 pages).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Dorantes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melo, M.R., Flores, N.R., Murrieta, S.V. et al. Comparative plant growth promoting traits and distribution of rhizobacteria associated with heavy metals in contaminated soils. Int. J. Environ. Sci. Technol. 8, 807–816 (2011). https://doi.org/10.1007/BF03326264

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326264

Keywords

Navigation