Skip to main content
Log in

Electrogenic capabilities of gram negative and gram positive bacteria in microbial fuel cell combined with biological wastewater treatment

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

The voltage and the power production of two gram negative and two gram positive bacteria in four identical continuous flow microbial fuel cells combined with biological wastewater treatment units were evaluated and compared in the present study. Each microbial fuel cell and biological treatment unit was operated at four different flow rates and four different external load resistances. The results show that overall removal efficiency of chemical oxygen demand for all four systems can reach more than 85.5 %. Each pure culture has different power generation performance that can be affected by some factors, such as wastewater characteristics, influent flow rate and hydraulic retention time of reactor. Good linear relationships between the flow rate and the potential and between the flow rate and the power density on four pure cultures at different external load resistances were found. Comamonas testosteroni has better power generation performance than Arthrobacter polychromogenes, especially at higher flow rate. Although Pseudomonas putida also showed higher power generation than Corynebacterium glutamicum, the difference was not statistically significant. It seems that gram negative bacteria could display higher power generation than gram positive bacteria at higher flow rate. However, more evidence is required to provide stronger proof for the difference of power generation between gram negative and gram positive bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Behera, M.; Ghangrekar, M. M., (2009). Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH. Bioresour. Tech., 100(21), 5114–5121 (8 pages).

    Article  CAS  Google Scholar 

  • Biffinger, J. C.; Byrd, J. N.; Dudley, B. L.; Ringeisen, B. R., (2008). Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells. Biosens. Bioelectron., 23(6), 820–826 (7 pages).

    Article  CAS  Google Scholar 

  • Bond, D. R.; Lovley, D. R., (2003). Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol., 69(3), 1548–1555 (8 pages).

    Article  CAS  Google Scholar 

  • Chaudhuri, S. K.; Lovley, D. R., (2003). Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotech., 21, 1229–1232 (4 pages).

    Article  CAS  Google Scholar 

  • Chen, Y. H.; Chen, C. Y.; Lee, S. C., (2010). Technology forecasting of new clean energy: The example of hydrogen energy and fuel cell. Afr. J. Bus. Manag., 4(7), 1372–1380 (9 pages).

    Google Scholar 

  • Clesceri, L. S.; Greenberg, A. E.; Eaton, A. D., (). Standard methods for the examination of water and wastewater, American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF).

  • Debabov, V. G., (2008). Electricity from Microorganisms. Microbiol., 77(2), 123–131 (9 pages).

    Article  CAS  Google Scholar 

  • Du, Z.; Li, H.; Gu, T., (2007). A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotech. Adv., 25(5), 464–482 (19 pages).

    Article  CAS  Google Scholar 

  • El Diwani, G.; El Rafie, S.; Hawash, S., (2009). Degradation of 2, 4, 6-trinitotoluene in aqueous solution by ozonation and multi-stage ozonation biological treatment. Int. J. Environ. Sci. Tech., 6(4), 619–628 (10 pages).

    Google Scholar 

  • Finch, A. S.; Mackie, T. D.; Sund, C. J.; Sumner, J. J., (2011). Metabolite analysis of Clostridium acetobutylicum: Fermentation in a microbial fuel cell. Bioresour. Tech., 102(1), 312–315 (4 pages).

    Article  CAS  Google Scholar 

  • Ghangrekar, M. M.; Shinde, V. B., (2007). Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode distance and area on electricity production. Bioresour. Tech., 98(15), 2879–2885 (7 pages).

    Article  CAS  Google Scholar 

  • Juang, D. F.; Chiou, L. J., (2007). Microbial population structures in activated sludge before and after the application of synthetic polymer. Int. J. Environ. Sci. Tech., 4(1), 119–125 (7 pages).

    Article  CAS  Google Scholar 

  • Kim, B. H.; Kim, H. J.; Hyun, M. S.; Park, D. H., (1999). Direct electrode reaction of Fe (III) reducing bacterium, Shewanella putrefacience. J. Microbiol. Biotech., 9, 127–131 (5 pages).

    Google Scholar 

  • Kim, H. J.; Park, H. S.; Hyun, M. S.; Chang, I. S.; Kim, M.; Kim, B. H., (2002). A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefacians.Enzyme Microb. Tech., 30, 145–152 (8 pages).

    Article  CAS  Google Scholar 

  • Lee, S. C.; Shih, L. H., (2010). Renewable energy policy evaluation using real option model-The case of Taiwan. Energy Econ., 32(Supplement 1), 567–578 (12 pages).

    Google Scholar 

  • Li, Z. L.; Yao, L.; Kong, L. C.; Liu, H., (2008). Electricity generation using a baffled microbial fuel cell convenient for stacking. Bioresour. Tech., 99(6), 1650–1655 (6 pages).

    Article  CAS  Google Scholar 

  • Liu, H.; Cheng, S.; Huang, L.; Logan, B. E., (2008). Scale-up of membrane-free single-chamber microbial fuel cells. J. Power Sources, 179(1), 274–279 (6 pages).

    Article  CAS  Google Scholar 

  • Logan, B. E.; Regan, J. M., (2006). Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol., 14(12), 512–518 (7 pages).

    Article  CAS  Google Scholar 

  • Mathuriya, A. S.; Sharma, V. N., (2009). Bioelectricity production from paper industry waste using a microbial fuel cell by Clostridium species. J. Biochem. Tech., 1(2), 49–52 (4 pages).

    Google Scholar 

  • Min, B.; Cheng, S.; Logan, B. E., (2005). Electricity generation using membrane and salt bridge microbial fuel cells. Water Res., 39(9), 1675–1686 (12 pages).

    Article  CAS  Google Scholar 

  • Mohan, S. V.; Mohanakrishna, G.; Sarma, P. N., (2010). Composite vegetable waste as renewable resource for bioelectricity generation through non-catalyzed open-air cathode microbial fuel cell. Bioresour. Tech., 101(3), 970–976 (7 pages).

    Article  Google Scholar 

  • Park, H. S.; Kim, B. H.; Kim, H. S.; Kim, H. J.; Kim, G. T.; Kim, M.; Chang, I. S.; Park, Y. K.; Chang, H. I., (2001). A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe, 7(6), 297–306 (10 pages).

    Article  CAS  Google Scholar 

  • Rabaey, K.; Boon, N.; Siciliano, S. D.; Verhaege, M.; Verstraete, W., (2004). Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol., 70(9), 5373–5382 (10 pages).

    Article  CAS  Google Scholar 

  • Rabaey, K.; Verstraete, W., (2005). Microbial fuel cells: novel biotechnology for energy generation. Trends Biotech., 23(6), 291–298 (8 pages).

    Article  CAS  Google Scholar 

  • Refaat, A. A., (2009). Correlation between the chemical structure of biodiesel and its physical properties. Int. J. Environ. Sci. Tech., 6(4), 677–694 (18 pages).

    CAS  Google Scholar 

  • Refaat, A. A., (2010). Different techniques for the production of biodiesel from waste vegetable oil. Int. J. Environ. Sci. Tech., 7(1), 183–213 (31 pages).

    CAS  Google Scholar 

  • Rodrigo, M. A.; Cañizares, P.; Lobato, R.; Paz, R.; Sáez, C.; Linares, J. J., (2007). Production of electricity from the treatment of urban waste water using a microbial fuel cell. J. Power Sources, 169(1), 198–204 (7 pages).

    Article  CAS  Google Scholar 

  • Schroder, U.; Nieben, J.; Scholz, F., (2003). A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew. Chem. Int. Ed. Engl., 42(25), 2880–2883 (4 pages).

    Article  Google Scholar 

  • Sun, J.; Hu, Y.; Bi, Z.; Cao, Y., (2009). Improved performance of air-cathode single-chamber microbial fuel cell for wastewater treatment using microfiltration membranes and multiple sludge inoculation. J. Power Sources, 187(2), 471–479 (9 pages).

    Article  CAS  Google Scholar 

  • Watson, V. J.; Logan, B. E., (2010). Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures. Biotech. Bioeng., 105(3), 489–498 (10 pages).

    Article  CAS  Google Scholar 

  • You, S. J.; Zhao, Q. L.; Jiang, J. Q.; Zhang, J. N., (2006). Treatment of domestic wastewater with simultaneous electricity generation in microbial fuel cell under continuous operation. Chem. Biochem. Eng. Q., 20(4), 407–412 (6 pages).

    CAS  Google Scholar 

  • Zhang, T.; Cui, C.; Chen, S.; Yang, H.; Shen, P., (2008). The direct electrocatalysis of Escherichia coli through electroactivated excretion in microbial fuel cell. Electrochem. Commun., 10(2), 293–297 (5 pages).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. F. Juang Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Juang, D.F., Yang, P.C., Lee, C.H. et al. Electrogenic capabilities of gram negative and gram positive bacteria in microbial fuel cell combined with biological wastewater treatment. Int. J. Environ. Sci. Technol. 8, 781–792 (2011). https://doi.org/10.1007/BF03326261

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326261

Keywords

Navigation