Skip to main content
Log in

Time lapse chemical fertilizer monitoring in agriculture sandy soil

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

Geoelectrical resistivity, hydrogeochemical and soil properties analysis methods were used for chemical fertilizer monitoring in sandy soil at a palm oil plantation in Machang, Malaysia. The time lapse monitoring was done using these methods five times within a three-month period. The hydrogeochemical analysis was conducted over three auger holes to a depth of 1 m and sampled at 25 cm intervals. Chemical fertilizer was applied to the 21 × 21 m2 area after the first data set measurement. The areas outside of this fertilized zone are considered a nonfertilized zone. The other four data sets were acquired at about equal time intervals, thus giving a four-post fertilization data set. The hydrogeochemical measurements indicate that the cations content are relatively similar for every time lapse measurement. However, relatively higher changes of anions content occur at the surface level to a depth of 1 m. The nitrate concentration above the limit for safe human consumption as it returns to the initial value about 100 days after fertilization. The geoelectrical model prior to fertilization showed similar resistivity values at near surface to a depth of about 75 cm with no significant occurrences of low resistivity values. Lower resistivity values were obtained during the second, third, fourth and fifth measurements within the chemically fertilized zone. In the last measurement, the resistivity values in the fertilized zone are almost similar to the nonfertilized zone. This indicates that the contaminant has dissolved into the surrounding environment within this time period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdul Nassir, S. S.; Loke, M. H.; Lee, C. Y.; Nawawi, M. N. M., (2000). Salt-water intrusion mapping by geoelectrical imaging surveys. Geophys. Prospect., 48(4), 647–661 (15 pages).

    Article  Google Scholar 

  • Almasri, M. N.; Kaluarachchi, J. J., (2004). Assessment and management of long-term nitrate pollution of ground water in agriculture-dominated watersheds. J. Hydrol., 295, 225–245 (21 pages).

    Article  CAS  Google Scholar 

  • Andrews, J. F., (1986). A mathematical model for the continuous cultures of microorganisms utilizing inhibitory substrates, Biotech. Bioeng., 10(6), 707–723 (17 pages).

    Article  Google Scholar 

  • Atafar Z, Mesdaghinia A, Nouri J, Homaee, M.; Yunesian, M., (2010). Effect of fertilizer application on soil heavy metal concentration. Environ. Monitor. Assess. 160(1–4), 83–89 (7 pages)

    Article  CAS  Google Scholar 

  • Baharuddin, M. F. T.; Hashim, R.; Taib, S., (2009). Electrical Imaging Resistivity Study at the Coastal Area of Sungai Besar, Selangor, Malaysia. J. Appl. Sci., 9(16), 2897–2906 (10 pages).

    Article  CAS  Google Scholar 

  • Barker, R. D., (1981). Offset system of electrical resistivity sounding and its use with multicore cables. Geophys. Prospect., 29(1), 128–143 (16 pages).

    Article  Google Scholar 

  • Bear, J., (1972). Dynamics of fluids in porous media, American Elsevier Pub. Co.

  • Bernhard, C.; Carbiener, R.; Cloots, A. R.; Froehlicher, R.; Schenk, C.; Zilliox, L., (1992). Nitrate pollution of groundwater in the Alsatian plain (France). A multidisciplinary study of an agricultural area: the central ried of the 1ll river. Environ. Geol. Water Sci., 20(2), 125–137 (13 pages).

    Article  CAS  Google Scholar 

  • Black, C. A., (1965). Methods of soil analysis, Part 1: Physical and mineralogical properties. The American Society of Agronomy., 9. Madison, Wisconsin, USA.

    Google Scholar 

  • Cobbing, E. J.; Pitfield, P. E. J., (1992). The Granites of the South-East Asian tin belt, British Geological Survey, Overseas Memoir 10.

  • Das, B. M., (2001). Principles of geotechnical engineering, fifth edition, California State University.

  • Griffiths, D. H.; Barker, R. D., (1993). Two-dimensional resistivity imaging and modelling in areas of complex geology. J. Appl. Geophys., 29(3–4), 211–226 (16 pages).

    Article  Google Scholar 

  • Griffiths, D. H.; Turnbull, J.; Olayinka, A. I., (1990). Two-dimensional resistivity mapping with a computer-controlled array. First Break., 8(4), 121–129 (9 pages).

    Google Scholar 

  • Islami, N.,(2010a). Geoelectrical Resistivity and Hydrogeochemical Contrast between the Area that Has Been Applied with Fertilization for Long Duration and Non-Fertilization. ITB. J. Eng. Sci., 42(2), 151–164 (14 pages).

    Google Scholar 

  • Islami, N.; Samsudin, T.; Yusoff, I., (2010b). Geoelectrical Resistivity and Hydrogeochemical Methods for Groundwater Investigation in the Agriculture Area: A Case Study from Machang — Malaysia, Full Paper (Proceeding) in International Symposium and The 2nd AUN/SEED-Net Regional Conference on Geo-Disaster Mitigation in ASEAN. Bali, Indonesia 25–26 February, 383–394 (12 pages).

  • Kaushal, K. G.; Madan, K. J.; Kar, S., (2005). Field Investigation of Water Movement and Nitrate Transport under Perched Water Table Conditions. Biosyst. Eng., 92(1), 69–84 (16 pages).

    Article  Google Scholar 

  • Lee, M. S.; Kang-Kun, Lee, K. K.; Hyuna, Y.; Clement, T. P.; Hamilton, D., (2006). Nitrogen transformation and transport modeling in groundwater aquifers. Ecol. Model., 192, 143–159 (17 pages).

    Article  CAS  Google Scholar 

  • Leroux, V.; Dahlin, T., (2006). Time-lapse resistivity investigations for imaging saltwater transport in glaciofluvial deposits. Environ. Geol., 49, 347–358 (12 pages).

    Article  CAS  Google Scholar 

  • Loke, M. H., (1999). Electrical imaging surveys for environmental and engineering studies. User’s Manual for Res2dinv. Electronic version. http://www.geometrics.com.

  • Loke, M. H., (2007). Rapid 2-D Resistivity and IP inversion using the least-squares method, Geoelectrical Imaging 2D and 3D. GEOTOMO SOFTWARE, Malaysia. http://www.geoelectrical.com.

  • Loke, M. H.; Barker R. D., (1996). Rapid least-squares inversion of apparent resistivity pseudo sections using a quasi-Newton method. Geophys. Prospect., 44, 131–152 (22 pages).

    Article  Google Scholar 

  • Mahvi, A. H.; Nouri, J.; Babaei, A. A.; Nabizadeh. R., (2005). Agricultural activities impact on groundwater nitrate pollution. Int. J. Environ. Sci. Tech., 2(1), 41–48 (8 pages).

    CAS  Google Scholar 

  • Malaysian Meteorological Department (MMD)., (2009). Annual Report.

  • Mirjat, M. S.; Chandio, A. S.; Memon, S. A.; Mirjat, M. U., (2008). Nitrate Movement in the Soil Profile under Irrigated Agriculture: A Case Study. Agricultural Engineering International. The CIGR Ejournal. Manuscript LW 07 024.

  • Noel, M.; Walker, R., (1990). Development of an electrical resistivity tomography system for imaging archeological structures. In: Pernicka, E.; Wagner, G.A. (Eds.), Archaeometry ’90. Birkhauser, Basel, 767–776 (10 pages).

  • Obire, O.; Ogan, A.; Okigbo, R. N., (2008). Impact of fertilizer plant effluent on water quality. Int. J. Environ. Sci. Tech., 5(1), 107–118 (12 pages).

    CAS  Google Scholar 

  • Oelmann, Y.; Kreutziger, Y.; Bol, R.; Wilcke, W., (2007). Nitrate leaching in soil: Tracing the NO3-sources with the help of stable N and O isotopes. Soil Biol. Biochem., 39(12), 3024–3033 (10 pages).

    Article  CAS  Google Scholar 

  • Overmeeren van, R. A.; Ritsema, I. L., (1988). Continuous vertical electrical sounding. First Break., 6(10), 313–324 (12 pages).

    Google Scholar 

  • Reynolds, J. M., (1997). An Introduction to Applied and Environmental Geophysics. John Wiley and Sons, Chichester.

    Google Scholar 

  • Saadi, Z.; Maslouhi, A., (2003). Modeling nitrogen dynamics in unsaturated soils for evaluating nitrate contamination of the Mnasra groundwater. Adv. Environ. Res., 7, 803–823 (21 pages).

    Article  CAS  Google Scholar 

  • Saim, S., (1999). Groundwater protection in North Kelantan, Malaysia. SOURCE: Seminar on Water: Forestry and Landuse Perspectives. Kuala Lumpur, Malaysia 30–31 March. Paper 11.

  • Samsudin, A. R.; Haryono, A.; Hamzah, U.; Rafek, A. G., (2007). Salinity mapping of coastal groundwater aquifers using hydrogeochemical and geophysical methods: a case study from north Kelantan, Malaysia. Environ. Geol.

  • Silva, R. G.; Holub, S. M.; Jorgensen, E. E.; Ashanuzzaman, A. N. M., (2005). Indicators of nitrate leaching loss under different land use of clayey and sandy soils in southeastern Oklahoma. Agriculture, Ecosyst. Environ., 109, 346–359 (14 pages).

    Article  CAS  Google Scholar 

  • Singh, B.; Singh, Y,; Sekhon, G. S., (1995). Fertilizer-N use efficiency and nitrate pollution of groundwater in developing countries. Contam Hydrol., 20, 167–184 (18 pages).

    Article  Google Scholar 

  • Taylor, J. R., (1997). An Introduction to Error Analysis. University Science Books, Sausalito, CA.

    Google Scholar 

  • Till, R., (1974). Statistical methods for the earth scientist, The Macmillan Press Ltd.

  • U.S. EPA., (1980). Nitrogen-ammonia/nitrite/nitrate, water quality standards criteria summaries. GPO: 1980-341-082/ 107. Washington, DC.

    Google Scholar 

  • World Health Organization (WHO)., (1984). Guideline for Drinking-Water, Vol. 1. Recommendations. World Health Organization, Geneva.

  • Yang, S. M.; Li, F. N.; Suo, D. R.; Guo, T. W., (2006). Effect of long-term fertilization on soil productivity and nitrate accumulation in Gansu Oasis. Agr. Sci. in China, 5(1), 57–67 (11 pages).

    Article  Google Scholar 

  • Zhang, H.; Dang, Z.; Zheng, L. C.; Yi, X.Y., (2009). Remediation of soil co-contaminated with pyrene and cadmium by growing maize (Zea mays L.). Int. J. Environ. Sci. Tech., 6(2), 249–258. (10 pages).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Islami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Islami, N., Taib, S., Yusoff, I. et al. Time lapse chemical fertilizer monitoring in agriculture sandy soil. Int. J. Environ. Sci. Technol. 8, 765–780 (2011). https://doi.org/10.1007/BF03326260

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326260

Keywords

Navigation