Skip to main content
Log in

Dynamic behavior modeling of cigarette smoke particles inside the car cabin with different ventilation scenarios

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

Dynamic behavior of cigarette smoke particles inside the cabin of cars is investigated and the respirable suspended particles concentration during and after smoking cigarette is predicted in this study. This model is based on mass balance equations. Mechanisms of deposition on the surfaces and the exchange of air in the cabin are considered as sinks for emitted particles. The coagulation is accounted as a sink for smaller particles and as a source for larger particles. The various scenarios of smoking in the cars available in the literature are simulated in this study. Good agreement between the results of the present model and the experimental data, as well as the predictions of other available models, is achieved. The mean respirable suspended particle concentration in different scenarios is estimated and compared with Environmental Protection Agency’s health-based standards in order to specify the situations with respirable suspended particles concentrations exceeding the allowable limits. The results show that the concentration of particles due to the smoke of a single cigarette in a stationary medium sized car with the air conditioner off is 33.6 μg/m3 and nearly reaches the limits appointed by the Environmental Protection Agency for a 24 h incremental exposure (35 μg/m3). Corresponding values for moving cars have also been calculated and compared with the standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Corner, J.; Pendlebury, E. D., (1951). The coagulation and deposition of a stirred aerosol. In Proc. Phys. Soc. B., 64(8), 645–654 (10 pages).

    Article  Google Scholar 

  • Drossinos, Y.; Housiadas, C., (2006). Aerosol flows, In: Crowe, C. T., eds., Multiphase flow handbook, CRC Press, Taylor and Francis Group, Boca Raton, FL.

    Google Scholar 

  • Engelmann, R. J.; Pendergrass, W. R.; White, J. R.; Hall, M. E., (1992). The effectiveness of stationary automobiles as shelters in accidental releases of toxic materials. Atmos. Environ., 26A(17), 3119–3125 (7 pages).

    CAS  Google Scholar 

  • Fletcher, B.; Saunders, C. G., (1994). Air change rates in stationary and moving motor vehicles. J. Hazard. Mater., 38(2), 243–256 (14 pages).

    Google Scholar 

  • Fruina, S. A.; Winera, A. M.; Rodes C. E., (2004). Black carbon concentrations in California vehicles and estimation of in-vehicle diesel exhaust particulate matter exposures. Atmos. Environ., 38(25), 4123–4133 (11 pages).

    Article  Google Scholar 

  • Fuchs, N. A., (1964). The Mechanics of Aerosols, Dover Publication Inc., New York.

    Google Scholar 

  • Gao, N. P.; Niu, J. L., (2007). Modeling particle dispersion and deposition in indoor environments. Atmos. Environ., 41(18), 3862–3876 (15 pages).

    Article  CAS  Google Scholar 

  • Gelbard, F.; Seinfeld, J. H., (1980). Simulation of multicomponent aerosol dynamics. J. Colloid Interf. Sci., 78(2), 485–501 (17 pages).

    Article  CAS  Google Scholar 

  • Hosea, M. E.; Shampine, L. F., (1996). Analysis and implementation of TR-BDF2. Appl. Numer. Math., 20(1–2), 21–37 (17 pages).

    Article  Google Scholar 

  • Klepeis, N. E.; Ott, W. R.; Switzer, P., (1996). A multiple-smoker model for predicting indoor air quality in public lounges. Environ. Sci. Tech., 30(9), 2813–2820 (8 pages).

    Article  CAS  Google Scholar 

  • Klepeis, N. E.; Apte, M. G.; Gundel, L. A.; Sextro, R. G.; Nazaroff, W. W., (2003). Determining size specific emission factors for environmental smoke particles. Aerosol Sci. Tech., 37(10), 780–790 (11 pages).

    Article  CAS  Google Scholar 

  • Klepeis, N. E.; Nazaroff, W. W., (2006). Modeling residential exposure to secondhand tobacco smoke. Atmos. Environ., 40, 4393–4407 (15 pages).

    Article  CAS  Google Scholar 

  • Knibbs, L. D.; De Dear, R. J.; Atkinson, S. E., (2009). Field study of air change and flow rate in six automobiles. Indoor Air, 19(4), 303–313 (11 pages).

    Article  CAS  Google Scholar 

  • Lai, A. C. K.; Nazaroff, W. W., (2000). Modeling indoor particle deposition from turbulent flow onto smooth surfaces. J. Aerosol Sci., 31(4), 463–476 (4 pages).

    Article  CAS  Google Scholar 

  • Lai, A.C.K., (2005). Modeling indoor coarse particle deposition onto smooth and rough vertical surfaces. Atmos. Environ., 39(21), 3823–3830 (8 pages).

    Article  CAS  Google Scholar 

  • Lai, A. C. K.; Nazaroff, W. W., (2005). Supermicron particle deposition from turbulent chamber flow onto smooth and rough vertical surfaces. Atmos. Environ., 39, 4893–4900 (8 pages).

    Article  CAS  Google Scholar 

  • Lipowicz, P. J., (1988). Determination of cigarette smoke particle density from mass and mobility measurements in a millikan cell. J. Aerosol Sci., 19(5), 587–89 (3 pages).

    Article  CAS  Google Scholar 

  • Long, C. M.; Suh, H. H.; Catalano, P. J.; Koutrakis, P., (2001). Using time- and size-resolved particulate data to quantify indoor penetration and deposition behavior. Environ. Sci. Tech., 35, 2089–2099 (11 pages).

    Article  CAS  Google Scholar 

  • Maskarinec, M. P.; Jenkins, R. A.; Counts, R. W.; Dindal, A. B., (2000). determination of exposure to environmental tobacco smoke in restaurant and tavern workers in one US city. J. Expo. Analys. Environ. Epid., 10, 36–49 (14 pages).

    Article  CAS  Google Scholar 

  • Miller, S. L.; Nazaroff, W. W., (2001). Environmental tobacco smoke particles in multizone indoor environments. Atmos. Environ., 35, 2053–2067 (15 pages).

    Article  CAS  Google Scholar 

  • Nazaroff, W. W.; Cass, G. R., (1989). Mathematical modeling of indoor aerosol dynamics. Environ. Sci. Tech., 23(2), 157–166 (10 pages).

    Article  CAS  Google Scholar 

  • Nazaroff, W. W.; Hung, W. Y.; Sasse, A. G. B. M.; Gadgil, A. J., (1993). Predicting Regional Lung Deposition of Environmental Tobacco Smoke Particles. Aerosol Sci. Tech., 19(3), 243–254 (12 pages).

    Article  CAS  Google Scholar 

  • Nazaroff, W. W.; Klepeis, N., (2003). Environmental Tobacco Smoke Particles, In: Moraswka, L. and Salthammer, T., eds., Indoor Environment: Airborne Particles, and Settled Dust, Wiley-VCH, Weinheim.

    Google Scholar 

  • Offermann, F. J.; Sextro, R. G.; Fisk, W. J.; Grimsrud, D. T.; Nazaroff, W. W.; Nero, A. V.; Rezvan, K. L.; Yater, J., (1985). Control of respirable particles in indoor air with portable air cleaners. Atmos. Environ., 19(11), 1761–1771 (11 pages).

    Article  CAS  Google Scholar 

  • Omidvari, M.; Nouri, J. (2009). Effects of noise pollution on traffic policemen. Int. J. Environ. Res., 3(4), 645–652. (8 pages).

    Google Scholar 

  • Ott, W. R.; Langan, L.; Switzer, P., (1992). A time series model for cigarette smoking activity patters: model validation for carbon monoxide and respirable particles in an automobile. J. Expo. Analys. Environ. Epid., 2(Suppl. 2), 175–200 (26 pages).

    Google Scholar 

  • Ott, W. R.; Switzer, P.; Robinson, J., (1996). Particle concentrations inside a tavern before and after prohibition of smoking: Evaluating the performance of an indoor air quality model. J. Air Waste Manage. Assoc., 46, 1120–1134 (15 pages).

    Article  CAS  Google Scholar 

  • Ott, W. R.; Klepeis, N.; Switzer, P., (2008). Air change rates of motor vehicles and in-vehicle pollutant concentrations from secondhand smoke. J. Expos. Analys. Environ. Epid., 18(3), 312–325 (14 pages).

    Article  CAS  Google Scholar 

  • Park, J.; Spengler J. D.; Yoon, D.; Dunnyahn, T.; Lee, K.; Oxkaynak, H., (1998). Measurements of the air exchange rate of stationary vehicles and estimation of in-vehicle exposure. J. Expos. Analys. Environ. Epid., 8(1), 65–78 (14 pages).

    CAS  Google Scholar 

  • Phillips, K.; Howard, D. A.; Bentley, M. C.; Alvan, G., (1998). Measured exposures by personal monitoring for respirable suspended particles and environmental tobacco smoke of housewives and office workers resident in Bremen, Germany. Int. Arch. Occup. Environ. Health, 71(3), 201–212 (12 pages). 764

    Article  CAS  Google Scholar 

  • Pirjola, L.; Parviainen, H.; Hussein, T.; Valli, A.; Hameri, K.; Aaalto, P.; Virtanen, A.; Keskinen, J.; Pakkanen, T.A.; Makela, T.; Hillamo, R. E., (2004). “Sniffer”—a novel tool for chasing vehicles and measuring traffic pollutants. Atmos. Environ., 38(22), 3625–3635 (11 pages).

    Article  CAS  Google Scholar 

  • Rees, V. W.; Connolly, G. N., (2006). Measuring air quality to protect children from secondhand smoke in cars. Am. J. Prev. Med., 3(5), 363–368 (6 pages).

    Article  Google Scholar 

  • Reinhardt, H.; Kobori, S., (). The different standard test method for cabin air filters in Japan, USA and Europe, In: 5th International Filtration Conference, November 7th–8th, Osaka, Japan.

  • Repace, J., (2007). Exposure to secondhand smoke, In Ott, W. R., Steinemann, A. C. and Wallace, L. A., Exposure Analysis, CRC Press, Boca Raton, FL, p. 214.

    Google Scholar 

  • Rodes, C.; Sheldon, L.; Whitaker, D.; Clayton, A.; Fitzgerald, K.; Flanagan, J.; DiGenova, F.; Hering, S.; Frazier, C., (1998). Measuring concentrations of selected air pollutants inside California vehicles, Report prepared for California EPA. http://www.arb.ca.gov/research/abstracts/95-339.htm#Main (accessed 29 Oct, ).

  • Salam, M. A.; Shirasuna, Y.; Hirano, K.; Masunaga, S., (2011). Particle associated polycyclic aromatic hydrocarbons in the atmospheric environment of urban and suburban residential area. Int. J. Environ. Sci. Tech., 8(2), 255–266 (12 pages).

    CAS  Google Scholar 

  • Sendzik, T.; Fong, G. T.; Travers, M. J.; Hyland, A., (2009). An Experimental Investigation of Tobacco Smoke Pollution in Cars. Nicotine Tob. Res., 11(6), 627–634 (8 pages).

    Article  CAS  Google Scholar 

  • Sextro, R. G.; Gross, E.; Nazaroff, W. W., (). Determination of emissions profiles for indoor particle phase environmental tobacco smoke. In: Annual Meeting of the American Association for Aerosol Research, Traverse City, Michigan. Results reported in Nazaroff et al., 1993.

  • Sohn, M. D.; Apte, M. G.; Sextro, R. G.; Lai, A. C. K., (2007). Predicting size-resolved particle behavior in multizone buildings. Atmos. Environ., 41(7), 1473–1482 (10 pages).

    Article  CAS  Google Scholar 

  • Tang, U. W.; Wang, Z., (2006). Determining gaseous emission factors and driver’s particle exposures during traffic congestion by vehicle-following measurement techniques. J. Air Waste Manage. Assoc., 56(11),1532–1539 (8 pages).

    Article  CAS  Google Scholar 

  • Thatcher, T. L.; Lai, A. C. K.; Moreno-Jackson, R.; Sextro, R. G.; Nazaroff, W. W., (2002). Effects of room furnishings and air speed on particle deposition rates indoors. Atmos. Environ., 36(11), 1811–1819 (9 pages).

    Article  CAS  Google Scholar 

  • Xu, M. D.; Nematollahi, M.; Sextro, R.G.; Gadgil, A. J.; Nazaroff, W. W., (1994). Deposition of tobacco smoke particles in a low ventilation room. Aerosol Sci. Tech., 20(2), 194–206 (13 pages).

    Article  CAS  Google Scholar 

  • Zhao, B.; Wu, J., (2007). Particle deposition in indoor environments: Analysis of influencing factors. J. Hazard. Mater., 147(1–2), 439–448 (10 pages).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Saber M.Sc..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saber, E.M., Bazargan, M. Dynamic behavior modeling of cigarette smoke particles inside the car cabin with different ventilation scenarios. Int. J. Environ. Sci. Technol. 8, 747–764 (2011). https://doi.org/10.1007/BF03326259

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326259

Keywords

Navigation