Advertisement

Diversity of hydrolytic enzymes in haloarchaeal strains isolated from salt lake

  • A. Makhdoumi Kakhki
  • M. A. Amoozegar
  • E. Mahmodi Khaledi
Article

Abstract

Production of ten hydrolytic enzymes was qualitatively studied on the haloarchaeal strains isolated from Aran-Bidgol hypersaline lake in the central desert area of Iran. A total of 293 haloarchea strains were selected among 300 extremely halophilic isolated prokaryotes. Accordingly, 142, 141, 128, 64, 38, 16, 7, 3 and 1 archaeal isolates were able to produce DNase, amylase, lipase, inulinase, pullulanase, protease, cellulase, chitinase and xylanase, respectively. None was able to produce pectinase activity. Combined hydrolytic activity was also detected in many strains. A total of 0.3 % of the strains showed 6 hydrolytic activities, 0.3 % of the strains had 5 hydrolytic activities, 5.4 % of the strains presented 4 hydrolytic activities, 25 % of the strains presented 3 hydrolytic activities, 28 % of the strains presented 2 hydrolytic activities and 18 % of the strains presented 1 hydrolytic activity. According to their phenotypic characteristics and comparative partial 16 S rRNA sequence analysis, the halophilic strains were all identified as members of family Halobacteriaceae within 12 different taxa from the following genera: Halorubrum, Haloarcula, Natrinema, Halovivax and Natronomonas. Most enzymes production rate was observed in the genera Halorubrum, Haloarcula and Natrinema whereas; there was not any detectable amount of enzyme production in the genera Halovivax and Natronomonas. The most hydrolytic isolate with 6 combinatorial enzyme production belonged to the genus Natrinema. This investigation showed that the extreme halophilic archaea from Aran-Bidgol lake are a potential source of hydrolytic enzyme under stress conditions and may have possess commercial value.

Keywords

Archaea Biodiversity Enzyme Hypersaline environment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allais, J. J.; Kammoun, S.; Blanc, P.; Girard, C.; Baratti, J. C., (1986). Isolation and characterization of bacterial strains with inulinase activity. Appl. Environ. Microbiol., 52(5), 1086–1090 (5 pages).Google Scholar
  2. Amoozegar, M. A.; Malekzadeh, F.; Malik, K. A., (2003). Production of amylase by newly isolated moderate halophile Halobacillus sp. Strain MA-2. J. Microbiol. Methods., 52(3), 353–359 (7 pages).CrossRefGoogle Scholar
  3. Amoozegar, M. A.; Schumann, P.; Hajighasemi, M.; Fatemi, A. Z., (2008).Salinivibrio proteolyticus sp. nov. a moderately halophilic and proteolytic species from a hypersaline lake in Iran. Int. J. Syst. Evol. Microbiol., 58(5), 1159–1163 (5 pages).CrossRefGoogle Scholar
  4. Anikandan, M.; Kannan, V.; Pašic, L., (2009). Diversity of microorganisms in solar salterns of Tamil Nadu, India. World J. Microb. Biotech., 25(6), 1007–1017 (11 pages).CrossRefGoogle Scholar
  5. Benlloch, S.; Acinas, S. G.; Anton, J.; Lopez-Lopez Luz, S. P.; Rodriguez-Valera, F., (2001). Archaeal biodiversity in crystallizer ponds from a solar saltern: Culture versus PCR. Microb. Ecol., 41(1), 12–19 (8 pages).Google Scholar
  6. Birbir, M.; Calli, B.; Mertoglu, B.; Bardavid, R.; Oren, A.; Ogmen, M.; Ogan, A., (2007). Extremely halophilic Archaea from Tuz Lake, Turkey, and the adjacent Kaldirim and Kayacik salterns. World. J. Microbiol. Biotech., 23(3), 309–316 (8 pages).CrossRefGoogle Scholar
  7. Burns, D. G.; Camakaris, H. M.; Janssen, P. H.; Dyall-Smith, M. L., (2004). Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl. Environ. Microbiol., 70(9), 5258–5265 (8 pages).CrossRefGoogle Scholar
  8. Caton, T. M.; Caton, I. R.; Witte, L. R.; Schneegurt, M. A., (2009). Archaeal Diversity at the Great Salt Plains of Oklahoma Described by Cultivation and Molecular Analyses. Micro. Ecol., 58(3), 519–528 (10 pages).CrossRefGoogle Scholar
  9. Danson, M. J.; Hough, D. W., (1997). The structural basis of protein halophilicity. Comp. Biochem. Physiol., 117(3), 307–312 (6 pages).CrossRefGoogle Scholar
  10. De Castro, R. E.; Ruiz, D. M.; Giménez, M. I.; Silveyra, M. X.; Paggi, R. A.; Maupin-Furlow, L. A., (2008). Gene cloning and heterologous synthesis of a haloalkaliphilic extracellular protease of Natrialba magadi. Extremophiles., 12(5), 677–687 (11 pages).CrossRefGoogle Scholar
  11. Dyall-Smith, M. L., ( 2008 ). The Halohandbook: Protocols for haloarchaeal Genetics. (onlinebook).Google Scholar
  12. Egorova, K.; Antranikian, G.; (2007). Biotechnology. In Archaea: evolution, physiology, and molecular biology / edited by Roger Garrett and Hans-Peter Klenk. First published by Blackwell Publishing Ltd. 295–321 (27 pages).Google Scholar
  13. Elevi, R.; Assa, P.; Birbir, M.; Ogan, A.; Oren, A., (2004). Characterization of extremely halophilic Archaea isolated from the Ayvalik Saltern, Turkey. World. J. Microbiol. Biotech., 20(7), 719–725. (7 pages).CrossRefGoogle Scholar
  14. Elshahed, M. S.; Najar, F. Z.; Roe, B. A.; Oren, A.; Dewers, T. A.; Krumholz, L. R., (2004). Survey of Archaeal Diversity Reveals an Abundance of Halophilic Archaea in a Low-Salt, Sulfide- and Sulfur-Rich Spring. Appl. Environ. Microbiol., 70(4), 2230–2239 (10 pages).CrossRefGoogle Scholar
  15. Felsenstein, J., (1985). Confidence limits on phylogenies: an approach using bootstrap. Int. J. Org. Evol., 39, 7 3-791 (9 pages).Google Scholar
  16. Felsenstein, J., (1993). PHYLIP (Phylogeny Inference Package) version 3.5C, Distributed by the author, Department of GeneticsUniversity of Washington, Seattle.Google Scholar
  17. Grant, W. D.; Kamekura, M.; McGenity, T. J.; Ventosa, A., (2001). Order I. Halobacteriales. In G. M. Garrity (man. ed.), Bergey’s Manual of Systematic Bacteriology V.I, The Archaea and Deeply Branching and Phototrophic Bacteria, 2nd Ed. Springer, New YGoogle Scholar
  18. Jukes, T. H.; Cantor, C. R., (1969). Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism, vol 3. Academic Press, New York, 21–32 (12 pages).Google Scholar
  19. Kumar, S.; Nei, M.; Dudley, J.; Tamura, K., (2004). Mega4: molecular evolutionary genetics analysis mega software version 4.0. Mol. Biol. Evol., 24(8), 1596–1599 (4 pages).Google Scholar
  20. Lin, Q. S.; Chen, S. H.; Hu, M. Y.; Rizwan-ul-Haq, M.; Yang, L.; Li, H., (2011). Biodegradation of cypermethrin by a newly isolated actinomycetes HU-S-01 from wastewater sludge. Int. J. Environ. Sci. Tech., 8(1), 45–56 (12 pages).CrossRefGoogle Scholar
  21. Lizama, C.; Monteoliva-Sánchez, M.; Prado, B.; Ramos-Cormenzana, A.; Weckesser, J.; Campos, V., (2001). Taxonomic study of extreme halophilic archaea isolated from the “Salar de Atacama”, Chile. Syst. Appl. Microbiol., 24(3), 464–474 (11 pages).CrossRefGoogle Scholar
  22. Madigan, M. T.; Oren, A., (1999). Thermophilic and halophilic extremophiles. Curr. Opin. Microbiol., 2(3), 265–269.CrossRefGoogle Scholar
  23. Marhuenda-Egea, F. C.; Bonete, M. J., (2002). Extreme halophilic enzymes in organic solvents. Curr. Opin. biotech., 13(4), 385–389 (5 pages).CrossRefGoogle Scholar
  24. Maturrano, L.; Santos, F.; Rosselo-Mora, R.; Anton, J., (2006). Microbial Diversity in Maras Salterns, a Hypersaline Environment in the Peruvian Andes. Appl. Environ. Microbiol., 72(6), 3887–3895 (9 pages).CrossRefGoogle Scholar
  25. Müller-Santos, M.; Souza, E. M.; Pedrosa, F.; Mitchell, D. A.; Longhi, S.; Carrière, F.; Canaan, S.; Krieger, N., (2009). First evidence for the salt-dependent folding and activity of an esterase from the halophilic archaea Haloarcula marismortui. Biochimica. Biophys. Acta., 1791(8), 719–729 (11 pages).CrossRefGoogle Scholar
  26. Mutlu, M. B.; Martýnez-Garcya, M.; Santos, F.; Pen, A.; Guven, K.; Anton, J., (2008). Prokaryotic diversity in Tuz Lake, a hypersaline environment in Inland Turkey. FEMS. Microbiol. Ecol., 65(3), 474–483 (10 pages).CrossRefGoogle Scholar
  27. Oh, D.; Porter, K.; Russ, B.; Burns, D.; Dyall-Smith, M., (2009). Diversity of Haloquadratum and other haloarchaea in three, geographically distant, Australian saltern crystallizer ponds. Extremophiles, 14(2), 161–169 (9 pages).CrossRefGoogle Scholar
  28. Onishi, H.; Mori, T.; Takeuchi, S.; Tani, K.; Kobayashi, T., (1983). Halophilic nuclease of a moderately halophilic Bacillus sp. Production purification and characteristics. Appl. Environ. Microbiol., 45(1), 24–30 (7 pages).Google Scholar
  29. Ozcan, B.; Cokmus, C.; Coleri, A.; Caliskan, M., (2006). Characterization of extremely halophilic Archaea isolated from saline environment in different parts of Turkey. Microbiol., 75, 739–746 (8 pages).CrossRefGoogle Scholar
  30. Park, S.; Lee, J.; Lee, H., (2000). Purification and characterization of chitinase from a marine bacterium, Vibrio sp. 98CJ11027. J. Microbiol., 38(4), 224–229 (6 pages).Google Scholar
  31. Pasic, L.; Galan Barutal, S.; Poklar Ulrih, N.; Granar, M.; Herzog-Velikonja, B., (2005). Diversity of halophilic Archaea in the crystallizers of an Adriatic solar saltern. FEMS. Microbiol. Ecol., 54(3), 491–498 (8 pages).CrossRefGoogle Scholar
  32. Pecher, T.; Bock, A., (1981). In vivo susceptibility of halophilic and methanogenic organisms to protein synthesis inhibitors. FEMS. Microbiol. Lett., 10(3), 295–297 (3 pages).CrossRefGoogle Scholar
  33. Purdy, K. J.; Cresswell-Maynard, T. D.; Nedwell, D. B.; McGenity, T. J.; Grant, W. D.; Timmis, K. N.; Embley, T. M., (2004). Isolation of haloarchaea that grow at low salinities. Environ. Microbiol., 6(6), 591–595 (5 pages).CrossRefGoogle Scholar
  34. Rohban, R.; Amoozegar, M. A.; Ventosa, A., (2009). Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. J. Ind. Microbiol. Biotech., 36(3), 333–340 (8 pages).CrossRefGoogle Scholar
  35. Ruben, D.; Gonzalez, E.; Arenas, C.; Vilches, E. B.; De Billerbeck, M., (1993). Selective procedure for isolating microorganisms producing pullulanase and isoamylase. Biotech. Tech., 7(6), 429–434 (6 pages).CrossRefGoogle Scholar
  36. Ruiz, D. M.; De Castro, R. E., (2007). Effect of organic solvents on the activity and stability of an extracellular protease secreted by the haloalkaliphilic archaeon Natrialba magadii. J. Ind. Microbiol. Biotech., 34(2), 111–115 (5 pages).CrossRefGoogle Scholar
  37. Saitou, N.; Nei, M., (1987). The neighbor joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol., 4(4), 406–425 (20 pages).Google Scholar
  38. Samad, M. Y. A.; Razak, C. A. N.; Salleh, A. B.; Zinwan Yunus, W. M.; Ampon, K.; Basri, M., (1989). A plate assay for primary screening of lipase activity. J. Microbiol. Methods, 9(1), 51–56 (6 pages).CrossRefGoogle Scholar
  39. Sanchez-Porro, C.; Martin, S.; Mellado, E.; Ventosa, A., (2002). Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J. Appl. Microbiol., 94, 295–300 (6 pages).CrossRefGoogle Scholar
  40. Serdakowski, A. L.; Dordick, J. S., (2008). Enzyme activation for organic solvents made easy. Trends. Biotech., 26(1 ), 48–54 (7 pages).CrossRefGoogle Scholar
  41. Soares Marcia, M. C. N.; De Silva, R.; Gomez, E., (1999). Screening of bacterial strains for pectinolytic activity: characterization of the polygalacturonase produced by Bacillus sp. Rev. Microbiol., 30(4), 299–303 (5 pages).Google Scholar
  42. Thompson, J. D.; Gibson, T. J.; Plewniak, F.; Jeanmougin, F.; Higgins, D. J., (1997). The clustral X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res., 24, 4876–4882 (7 pages).CrossRefGoogle Scholar
  43. Wejse, P. L.; Ingvorsen, K.,(2003). Purification and characterization of two extremely halotolerant xylanase from a novel halophilic bacterium. Extremophiles, 7(5), 423–431 (9 pages).CrossRefGoogle Scholar
  44. Zhou, X. H.; Li, Z., (2004). CMCase activity assay as a method for cellulose adsorption analysis. Enzyme Microbiol. Tech., 35(5), 455–459 (5 pages).CrossRefGoogle Scholar

Copyright information

© Islamic Azad University 2011

Authors and Affiliations

  • A. Makhdoumi Kakhki
    • 1
  • M. A. Amoozegar
    • 1
  • E. Mahmodi Khaledi
    • 1
  1. 1.Extremophiles Laboratory, Department of Microbiology, College of ScienceUniversity of TehranTehranIran

Personalised recommendations