Skip to main content
Log in

Heavy metal chemical fractionation and immobilization in lightweight aggregates produced from mining and industrial waste

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

The fractionation of five heavy metals in a washing aggregate sludge, a sewage sludge, a clay-rich sediment, the mixtures of these materials and the lightweight aggregates manufactured with them has been determined by applying the optimized European Community Bureau of Reference sequential extraction procedure in order to evaluate the effects of the heating process on the extraction of these elements. Additionally, preparation of eluates by aggregate leaching has been performed in accordance with the UNE-EN-H44-3 standard. The availability of all the studied heavy metals has been reduced by the thermal treatment, since most of the heavy metals have become part of the undigested material in the lightweight aggregates. Nickel has been the heavy metal that has presented the highest concentration in the eluates obtained after completion of the single extraction procedure in the lightweight aggregates. The studied lightweight aggregates may be used in lightweight concrete manufacturing from the standpoint of heavy metal leaching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cappuyns, V.; Swennen, R., (2009). Sediment characterization during oxidation and ripening and evaluation of its potential reuse. Environ. Tech., 30(8), 785–797 (13 pages).

    Article  CAS  Google Scholar 

  • Castells, X. E., (2000). Reciclaje de residuos industriales, 1st. Ed. Díaz de Santos, S.A., 74–75 (2 pages).

  • Cheeseman, C. R.; Makinde, A.; Bethanis, S., (2005). Properties of lightweight aggregates produced by rapid sintering of incinerator bottom ash. Resour. Conserv. Recy., 43(2), 147–162 (16 pages).

    Article  Google Scholar 

  • Chen, H. J.; Wang, S. Y.; Tang, C. W., (2010). Reuse of incineration fly ashes and reaction ashes for manufacturing lightweight aggregate. Constr. Build. Mater., 24(1), 46–55 (10 pages).

    Article  Google Scholar 

  • Dang, Z.; Liu, C.; Haigh, M. J., (2002). Mobility of heavy metals associated with the natural weathering of coal mine spoils. Environ. Poll., 118(3), 419–426 (8 pages).

    Article  CAS  Google Scholar 

  • Dantas, T. N. C.; Neto, A. A. D.; Moura, M. C. P. A.; Neto, E. L. B.; Forte, K. R.; Leite, R. H. L., (2003). Heavy metals extraction by microemulsion. Water Res., 37(11), 2709–2717 (9 pages).

    Article  Google Scholar 

  • Davidson, C. M.; Urquhart, G. J.; Ajmone-Marsan, F.; Biasioli, M.; da Costa Duarte, A.; Díaz-Barrientos, E.; Gr čman, H.; Hossack, I.; Hursthouse, A. S.; Madrid, L.; Rodridues, S.; Zupan, M., (2006). Fractionation of potentially toxic elements in urban soils from five European cities by means of a harmonised sequential extraction procedure. Analys. Chim. Acta., 565(1), 63–72 (10 pages).

    Article  CAS  Google Scholar 

  • Deer, W. A.; Howie, R. A.; Zussman, J., (). An introduction to the rock-forming minerals, 2nd. Ed. Longman Scientific and Technical, 431–454 (24 pages).

  • EHE-08, (). Instrucci’ on de Hormigón Estructural, 2nd. Ed. Permanent Concrete Commission. Ministry of Development of Spain. Centre for Publications.

  • European Council, (). Decision 2003/33/CE, establishing criteria and procedure for the acceptance of waste at landfill pursuant to Article 16 and Annex II to Directive 1999/31/ CE. Official Journal of European Communities of 16 January 2003.

  • Gleyzes, C.; Tellier, S.; Astruc, M., (2002). Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trac-Trends Analys. Chem., 21(6–7), 451–467 (17 pages).

    Article  CAS  Google Scholar 

  • Gómez-Ariza, J. L.; Giráldez, I.; Sánchez-Rodas, D.; Morales, E., (2000). Metal sequential extraction procedure optimized for heavily polluted and iron oxide rich sediments. Analys. Chim. Acta., 414(1–2), 151–164 (14 pages).

    Article  Google Scholar 

  • González-Corrochano, B.; Alonso-Azcárate, J.; Rodas, M., (2009). Production of lightweight aggregates from mining and industrial wastes. J. Environ. Manage., 90(8), 2801–2812 (12 pages).

    Article  Google Scholar 

  • González-Corrochano, B.; Alonso-Azcárate, J.; Rodas, M.; Barrenechea, J. F.; Luque, F. J., (2011). Microstructure and mineralogy of lightweight aggregates manufactured from mining and industrial wastes. Constr. Build. Mater., 25(8), 3591–3602 (12 pages).

    Article  Google Scholar 

  • Guevara-Riba, A.; Sahuquillo, A.; Rubio, R.; Rauret, G., (2004). Assessment of metal mobility in dredged harbour sediments from Barcelona (Spain). Sci. Total Environ., 321(1–3), 241–255 (15 pages).

    Article  CAS  Google Scholar 

  • Huang, S.C.; Chang, F.C.; Lo, S. L.; Lee, M.Y.; Wang, C. F.; Lin, J. D., (2007). Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash. J. Hazard. Mater., 144(1–2), 52–58. (7 pages).

    Article  CAS  Google Scholar 

  • Kapoor, A.; Viraraghavan, T., (1998). Removal of heavy metals from aqueous solutions using immobilized fungal biomass in continuous mode. Water Res., 32(6), 1968–1977 (10 pages).

    Article  CAS  Google Scholar 

  • Ma, L. Q.; Rao, G. N., (1997). Chemical fractionation of cadmium, copper, nickel, and zinc in contaminated soils. J. Environ. Qual., 26(1), 259–264 (6 pages).

    Article  CAS  Google Scholar 

  • Meegoda, J. N.; Kamolpornwijit, W.; Vaccari, D. A.; Ezeldin, A. S.; Walden, L.; Ward, W. A.; Noval, B. A.; Mueller, R. T.; Santora, S., (). Aggregates for construction from vitrified chromium contaminated soils. Engineered Contaminated Soils and Interaction of Soil Geomembranes (GSP 59). 31–46 (16 pages).

  • Moreno Grau, M. D., (). Toxicología Ambiental. Evaluación de Riesgo para la Salud Humana, 1st. Ed. Mc Graw Hill.

  • Nouri, J.; Khorasani, N.; Lorestani, B.; Karami; M. Hassani; Hassani, A. H.; Yousefi, N. (2009). Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environ. Earth Sci. 59(2), 315–323 (9 pages).

    Article  CAS  Google Scholar 

  • Quevauviller, Ph., (1998). Operationally defined extraction procedures for soil and sediment analysis I. Standardization. Trac Trends Analys. Chem., 17(5), 289–298 (10 pages).

    Article  Google Scholar 

  • Rauret, G., (1998). Extraction procedures for the determination of heavy metals in contaminated soil and sediment. Talanta, 46(3), 449–455 (7 pages).

    Article  CAS  Google Scholar 

  • Rodrigo, M. A.; Rodríguez, L.; Cristina, A. C., (2004). Manual de operación y mantenimiento de la E.D.A.R. del campus tecnológico de Toledo, en el marco del proyecto de I+D “Desarrollo de sistemas de gestión de la explotación de estaciones de aguas residuales”, University of Castilla-La Mancha, Spain.

    Google Scholar 

  • Royal Decree 1310/1990, of 29 October, regulating the use of sludge from sewage treatment plants in the agricultural sector. BOE n∘. 262, of 1 November 1990.

  • Sahuquillo, A.; López-Sánchez, J. F.; Rubio, R.; Rauret, G.; Thomas, R. P; Davidson, C. M.; Ure, A. M., (1999). Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction procedure. Analys. Chim. Acta., 382(3), 317–327 (11 pages).

    Article  CAS  Google Scholar 

  • Sahuquillo, A.; Rigol, A.; Rauret, G., (2003). Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments. Trac Trends Analys. Chem., 22(3), 152–159 (8 pages).

    Article  CAS  Google Scholar 

  • Schlieker, M.; Schüring, J.; Hencke, J.; Schulz, H. D., (2001). The influence of redox processes on trace element mobility in a sandy aquifer — an experimental approach. J. Geochem. Explor., 73(3), 167–179 (13 pages).

    Article  CAS  Google Scholar 

  • UNE-EN-1744-3, (). Ensayos para determinar las propiedades químicas de los áridos. Parte 3: Preparación de eluatos por lixiviación de áridos.

  • U.S. E.P.A., (1995). Test methods for evaluating solid waste. Physical/chemical methods, SW-846, 3rd. Ed. U.S. Government Printing Office, Washington, DC.

    Google Scholar 

  • Wunsch, P.; Greilinger, C.; Bieniek, D.; Kettrup, A., (1996). Investigation of the binding of heavy metals in thermally treated residues from waste incineration. Chemosphere, 32(11), 2211–2218 (8 pages).

    Article  CAS  Google Scholar 

  • Zemberyova, M.; Bartekova, J.; Hagarova, I., (2006). The utilization of modified BCR three-step sequential extraction procedure for the fractionation of Cd, Cr, Cu, Ni, Pb and Zn in soil reference materials of different origins. Talanta, 70(5), 973–978 (6 pages).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Alonso Azcárate Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corrochano, B.G., Azcárate, J.A. & Gonzalez, M.R. Heavy metal chemical fractionation and immobilization in lightweight aggregates produced from mining and industrial waste. Int. J. Environ. Sci. Technol. 8, 667–676 (2011). https://doi.org/10.1007/BF03326251

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326251

Keywords

Navigation