Skip to main content
Log in

Adsorption of reactive dyes from aqueous solutions by tannery sludge developed activated carbon: Kinetic and equilibrium studies

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

Adsorption kinetic and equilibrium studies of two reactive dyes, namely, Reactive Red 31 and Reactive Red 2 were conducted. The equilibrium studies were conducted for various operational parameters such as initial dye concentration, pH, agitation speed, adsorbent dosage and temperature. The initial dye concentration was varied from 10 - 60 mg/L, pH from 2–11, agitation speed from 100–140 rpm, adsorbent dosage from 0.5 g to 2.5 g and temperature from 30 °C -50 °C respectively. The activated carbon of particle size 600 μm was developed from preliminary tannery sludge. The dye removal capacity of the two reactive red dyes decreased with increasing pH. The zero point charge for the sludge carbon was 9.0 and 7.0 for the two dyes, respectively. Batch kinetic data investigations on the removal of reactive dyes using tannery sludge activated carbon have been well described by the lagergren plots. It was suggested that the Pseudo second order adsorption mechanism was predominant for the sorption of the reactive dyes onto the tannery sludge based carbon. Thus, the adsorption phenomenon was suggested as a chemical process. The adsorption data fitted well with Langmuir model than the Freundlich model. The maximum adsorption capacity(q0) from Langmuir isotherm were found to have increased in the range of 23.15–39.37 mg/g and 47.62–55.87 mg/g for reactive dyes reactive red 31 and reactive red 2, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Degs, Y.; Khraisheh, M. A. M.; Allen, S. J.; Ahmad, M. N., (2000). Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent. Water Res., 34(3), 927–935 (9 pages).

    Article  CAS  Google Scholar 

  • Annadurai Gurusamy.; Lai Yi Ling.; Jiunn —Fwu Lee., (2008). Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis.

  • J. Hazard. Mater., 152 (1), 337–346 (10 pages).

  • Atafar, Z.; Mesdaghinia, A.; Nouri, J.; Homaee, M.; Yunesian, M., (2010). Effect of fertilizer application on soil heavy metal concentration. Environ. Monitor. Assess., 160(1–4), 83–89 (7 pages).

    Article  CAS  Google Scholar 

  • Ciardelli, G.; Corsi, L.; Marucci, M., (2000). Membrane separation for wastewater reuse in the textile industry. Resour. Conserv. Recycl., 31(2), 189–197 (9 pages).

    Article  Google Scholar 

  • Chien, M. K.; Shih, L. H., (2007). An empirical study of the implementation of green supply chain management practices in the electrical and electronic industry and their relation to organizational performances. Int. J. Environ. Sci. Tech., 4(3), 383–394 (12 pages).

    Google Scholar 

  • Crini, G., (2006). Non-conventional low-cost adsorbents for dye removal: a review. Bioresour. Technol., 97(9), 1061–1085 (25 pages).

    CAS  Google Scholar 

  • Ferrero, F. (2000). Oxidative degradation of dyes and surfactant in the Fenton and photo — Fenton treatment of dyehouse effluents. J. Soc. Dyers Colour, 116(5–6), 148–153 (6 pages).

    CAS  Google Scholar 

  • Forgacs, E.; Cserhati, T.; Oros, G., (2004). Removal of synthetic dyes from wastewaters: A review. Environ. Int., 30(7), 953–971 (19 pages).

    Article  CAS  Google Scholar 

  • Fung, P C.; Sin, K. M.; Tsui, S.M., (2000). Decolorization and degradation kinetics of reactive dye wastewater by UV/ultrasonic/peroxide system. J. Soc. Dyers Colour., 116(5–6), 170–173 (4 pages).

    CAS  Google Scholar 

  • Garg, V. K.; Gupta, R.; Yadavkumar, R., (2003). Dye removal from aqueous solution by adsorption on treated saw dust. Bioresour. Tech., 89(2), 121–124 (4 pages).

    Article  CAS  Google Scholar 

  • Gharbani, P.; Tabatabaii, S. M.; Mehrizad, A., (2008). Removal of Congo red from textile wastewater by ozonation. Int. J. Environ. Sci. Tech., 5(4), 495–500 (6 pages).

    Article  CAS  Google Scholar 

  • Hassani, A. H.; Mirzayee, R.; Nasseri, S.; Borghei, M.; Gholami, M.; Torabifar, B., (2008). Nanofiltration process on dye removal from simulated textile wastewater. Int. J. Environ. Sci. Tech., 5(3), 401–408 (6 pages).

    Article  CAS  Google Scholar 

  • Ho, Y. S.; McKay, G., (1999). Pseudo-second order model for sorption processes. Proc. Biochem., 34(5), 451–465 (15 pages).

    Article  CAS  Google Scholar 

  • Ho, Y. S., (2001). Sorption studies of acid dye by mixed sorbents. Adsorption, 7(2), 139–147 (9 pages).

    Article  CAS  Google Scholar 

  • Hsu, Y.; Chen, J.; Yang, H.; Chen, J., (2001). Decolorization of dyes using ozone in gas — induced a reactor. AIChE J. 47(1), 169–176 (8 pages).

    Article  CAS  Google Scholar 

  • Martin, M. J.; Artola, A.; Dolors Balaguer, M.; Rigola, M., (2003). Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions. Chem. Eng. J., 94(3), 231–239 (9 pages).

    Article  CAS  Google Scholar 

  • Naim, M. N.; El Abd, Y. M., (2002). Removal and recovery of dyestuffs from dyeing wastewaters. Sep. Purif. Methods., 31(1), 171–228 (58 pages).

    Article  CAS  Google Scholar 

  • Nandi, B. K.; Goswami, A.; Purkait, M. K., (2009). Adsorption characteristics of brilliant green dye on kaolin. J. Hazard. Mater., 161(1), 387–395 (9 pages).

    Article  CAS  Google Scholar 

  • Netpradit, S.; Thiravetyan, P.; Towprayoon, S., (2003). Application of waste metal hydroxide sludge for adsorption of azo reactive dyes, Water Res., 37(4), 763–772 (10 pages).

    Article  CAS  Google Scholar 

  • Netpradit, S.; Thiravetyan, P.; Towprayoon, S., (2004). Adsorption of three azo reactive dyes by metal hydroxide sludge: effect of temperature, pH and electrolytes. J. Colloid Interf. Sci., 270(2), 255–261 (7 pages).

    Article  CAS  Google Scholar 

  • Orfaco, J. J. M.; Silva, A. I. M.; Pereira, J. C. V.; Barata, S. A.; Fonseca, I. M.; Faria, P. C. C.; Pereira, M. F. R., (2006). Adsorption of a reactive dye on chemically modified activated carbons — Influence of pH. J. Colloid. Interf. Sci., 296(2), 480–489 (10 pages).

    Article  Google Scholar 

  • Robinson, T.; McMullan, G.; Marchant, R.; Nigam, P., (2001). Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Tech., 77(3), 247–255 (9 pages).

    Article  CAS  Google Scholar 

  • Samarghandi, M. R.; Nouri, J.; Mesdaghinia, A. R.; Mahvi, A. H.; Nasseri, S.; Vaezi, F., (2007). Efficiency removal of phenol, lead and cadmium by means of UV/ TiO2/ H2O2 processes. Int. J. Environ. Sci. Tech., 4(1), 19–25 (7 pages).

    Article  CAS  Google Scholar 

  • Santhy, K.; Selvapathy, P., (2006). Removal of reactive dyes from wastewater by adsorption on coir pith activated carbon. Bioresour. Tech., 97(11), 1329–1336 (8 pages).

    Article  CAS  Google Scholar 

  • Shukla, A.; Zhang, Y. H.; Dubey, P.; Margrave, J. L.; Shyam, S. S., (2002). The role of sawdust in the removal of unwanted materials from water. J. Hazard. Mater., 95(1–2), 137–152 (16 pages).

    Article  CAS  Google Scholar 

  • Sun, Q.; Yang, L., (2003). The adsorption of basic dyes from aqueous solution on modified peat-resin particle. Water Res., 37(7), 1535–1544 (10 pages).

    Article  CAS  Google Scholar 

  • Uygur, A.; Kok, F., (1999). Decolorization treatments of azo dye wastewaters including dichlorotriazinyl reactive groups by using advanced oxidation method. J. Soc. Dyers Colour, 115(11), 350–354 (5 pages).

    CAS  Google Scholar 

  • Vijayaraghavan, K.; Yeoung, S. Y., (2007). Utilization of fermentation waste (Corynebacterium glutamicum) for biosorption of Reactive Black 5 from aqueous solution. J. Hazard Mater., 141(1), 45–52 (8 pages).

    Article  CAS  Google Scholar 

  • Walker, G. M.; Weatherley, L. R., (1999). Biological activated carbon treatment of industrial wastewater in stirred tank reactors. Chem. Eng. J., 75(3), 201–206 (6 pages).

    Article  CAS  Google Scholar 

  • Yakup Arýca, M.; Bayramoglu Gulay., (2007). Biosorption of Reactive Red-120 dye from aqueous solution by native and modified fungus biomass preparations of Lentinus sajor-caju. J. of Hazard. Mater., 149(2), 499–507 (9 pages).

    Article  Google Scholar 

  • Zvinowanda, C. M.; Okonkwo, J. O.; Shabalala, P. N.; Agyei, N. M., (2009). A novel adsorbent for heavy metal remediation in aqueous environments. Int. J. Environ. Sci. Tech., 6(3), 425–434 (10 pages).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Geethakarthi M.E..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geethakarthi, A., Phanikumar, B.R. Adsorption of reactive dyes from aqueous solutions by tannery sludge developed activated carbon: Kinetic and equilibrium studies. Int. J. Environ. Sci. Technol. 8, 561–570 (2011). https://doi.org/10.1007/BF03326242

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326242

Keywords

Navigation