Skip to main content
Log in

Effects of soil types and forms of arsenical pesticide on rice growth and development

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

For decades, repeated and widespread use of arsenical pesticides has significantly contributed to arsenic contamination in soils. Residues from the overuse of these arsenicals may result in phytotoxicity to crops, which will depend on soil types, plant species and the toxicity of arsenical pesticides. A greenhouse column study was conducted to evaluate the effect of two pesticides, i.e. one organic (dimethylarsinic acid) and one inorganic (sodium arsenate), on the vegetative response of rice as a function of soil properties. Four soils with varying arsenic retention capabilities at two different pesticide amendment rates (675 and 1500 mg/kg) representing the worst case scenarios in superfund sites were used. Results showed that arsenic availability to rice was mainly influenced by soil physicochemical properties. The soil with the lowest arsenic retention capacity had the highest arsenic concentration in the leachate as well as in the plant tissue. In contrast, for soils with higher arsenic retention capacity, higher concentrations of arsenic were found in the surface soil which resulted in the inhibition of plant growth. There was no significant difference between labile arsenic / plant-available arsenic irrespective of the form of arsenical pesticide used. Plant growth parameters such as biomass, shoot height, root length decreased with increased arsenic concentrations in all soils. A significant negative correlation (P<0.05) was observed between the phytoavailable arsenic and plant growth response. Interestingly, the form of arsenical pesticide used did not impact arsenic uptake or shoot growth but significantly impacted root growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abedin, M. J.; Cottep-Howells, J.; Meharg, A. A., (2002b). Arsenic uptake and accumulation in rice (Oryza sativa L.) irrigated with contaminated water. Plant and Soil., 240, 311–319 (9 pages).

    Article  CAS  Google Scholar 

  • Abedin, M. J.; Meharg, A.A., (2002a). Relative toxicity of arsenite and arsenate on germination and early seedling growth of rice (Oryza sativa L.). Plant soil., 243(1), 57–66 (10 pages).

    Article  CAS  Google Scholar 

  • Abedin, M. J.; Cresser, M. S.; Meharg, A. A.; Feldmann, J.; Cotter-Howells, J., (2002c). Arsenic accumulation and metabolism in rice. Environ.Sci. Tech., 36(5), 962–968 (7 pages).

    Article  CAS  Google Scholar 

  • Adriano, D. C., (2001). Trace elements in terrestrial environments: Biogeochemistry, bioaccessibility and the risk of metals. 2nd. Ed., New York Springs.

  • Akins, M. B.; Lewis, J.R., (1976). Chemical distribution and gaseous evolution of arsenic-74 added to soils as DSMA74-As. Soil Sci. Soc. Am., 40, 655–658 (4 pages).

    Article  CAS  Google Scholar 

  • Alam, M. B.; Sattar, M. A., (2000). Assessment of arsenic contamination in soils and waters in some areas of Bangladesh. Water Sci. Tech. 42(7–8), 185–193 (9 pages).

    CAS  Google Scholar 

  • Baker, R. S.; Barrentine, W. L.; Bowman, D. H.; Hawthorne, W. L.; Pettiet, J. V., (1986). Crop response and arsenic uptake following soil incorporation of MSMA. Weed Science., 24(3), 322–326 (5 pages).

    Google Scholar 

  • Belluck, D. A.; Benjamin, S. L.; Baveye, P.; Sampson, J.; Johnson, V., (2003). Widespread arsenic contamination of soils in residential areas and public spaces: An emerging regulatory or medical crisis? Int. J. Toxicol., 22(6), 109–128 (20 pages).

    Article  CAS  Google Scholar 

  • Carbonell, A. A.; Aarabi, M. A.; DeLaune, R. D.; Gambrell, R. P.; Patrick Jr, W. H., (1998). Arsenic in wetland vegetation: Availability, phytotoxicity, uptake and effects on plant growth and nutrition. Sci. Total Environ., 217(3), 189–199 (11 pages).

    Article  CAS  Google Scholar 

  • Carbonell-Barachina, A. A.; Burlo-Carbonell, F.; Mataix-Beneyto. J., (1995). Arsenic uptake, distribution and accumulation in tomato plants: effect of arsenic on plant growth and yield. J. Plant Nutri., 18(6), 1237–1250 (14 pages).

    Article  Google Scholar 

  • Chen, M.; Ma, L. Q.; Harri, W. G., (1999). Baseline concentrations of 15 trace elements in Florida surface soils. J. Environ. Qual., 28(4), 1 73-1181 (9 pages).

    Google Scholar 

  • Chungao, C.; Zihui, L., (1988). Chemical speciation of arsenic in water, suspended solids and sediment of Xiangjiang river. China. Sci. Total Environ., 7 (1), 69–82 (14 pages).

    Google Scholar 

  • Cullen, W. R.; Reimer, K. J., (1989). Arsenic speciation in the environment. Chem. Rev., 89(4), 713–764 (52 pages).

    Article  CAS  Google Scholar 

  • Datta, R.; Sarkar, D., (2005). Consideration of soil properties in assessment of human health risk from exposure to arsenic-enriched soils. Integr. Environ. Assess. Manag., 1(1), 55–59 (5 pages).

    Article  CAS  Google Scholar 

  • Datta, R.; Sarkar, D., (2004). Arsenic geochemistry in three soils contaminated with sodium arsenite pesticide: An incubation study. Environ. Geosci., 11(2), 53–63 (11 pages).

    Article  Google Scholar 

  • Dickens, R.; Hiltbold. AR., (1967). Movement and persistence of methanearsenate in soils. Weeds, 15(4), 299–304 (6 pages).

    Article  CAS  Google Scholar 

  • Elkhatib, E. A.; Bennett, O. L.; Wright. R. J., (1984). Arsenite sorption and desorption in soils. Soil Sci. Soc. Am. J., 48, 1025–1030 (6 pages).

    Article  CAS  Google Scholar 

  • Fassbender, H. W., (1974). Content, forms and fixation in forest soils of arsenate in comparison with phosphate. Z. Pflanzenernaehr. Deung. Bodenkd. 137, 188–203 (16 pages).

    Article  CAS  Google Scholar 

  • Feng, X. D.; Dang, Z.; Huang, W. L.; Yang, C., (2009). Chemical speciation of fine particle bound trace metals. Int. J. Environ. Sci. Tech., 6(3), 337–346 (10 pages).

    CAS  Google Scholar 

  • Fordham, A. W.; Norrish, K., (1983). The nature of soil particles particularly those reacting with arsenate in a series of chemically treated samples. Aust. J. Soil Res., 21(4), 455–477 (23 pages).

    Article  CAS  Google Scholar 

  • Frans, R.; Horton. D.; Burdette, L., (1988). Influence of MSMA on straighthead, arsenic uptake and growth response in rice (Oryza sativa). Fayetteville, University of Arkansas.

    Google Scholar 

  • Garcia-Manyes, S.; Jiménez, G.; Padró, A.; Rubio, R; Rauret, G., (2002). Arsenic speciation in contaminated soils. Talanta, 58(1), 97–109 (13 pages).

    Article  CAS  Google Scholar 

  • Hale, J. R.;, Foos, A.; Zubrow, J. S; Cook. J., (1997). Better characterization of arsenic and chromium in soils: A field-scale example. J. Soil Contam., 6(4), 371–389 (19 pages).

    Article  CAS  Google Scholar 

  • Han, F. X.; Kingery, W. L.; Selim, H. M.; Gerard, P. D.; Cox, M. S.; Oldham, J. L., (2004). Arsenic solubility and distribution in poultry waste and long term amended soil. Sci. Total Environ., 320(1), 51–61 (11 pages).

    Article  CAS  Google Scholar 

  • Hartley-whitaker, J.; Ainsworth, G.; Mearg. A. A., (2001). Copper- and arsenate-induced oxidative stress in Holcus Lanatus L. clones with differential sensitivity. Plant Cell Environ., 24(7), 713–722 (10 pages).

    Article  CAS  Google Scholar 

  • Jahiruddin, M. M. R.; Islam, A. L.; Shah, S.; Islam, M.; Ghani, A.; (2004). Effects of arsenic contamination on yield and arsenic accumulation in crops. Shah M. (Ed.). Workshop on Arsenic in the Water-Soil-Crop Systems, BRRI, Gazipur, Bangladesh, 147, 39–52.

  • Jacobs, L. W.; Keeney, D. R.; Walsh, L. M., (1970) Arsenic residue toxicity to vegetable crops grown on plainfield sand. Agron. J., 62(5), 588–591 (4 pages).

    Article  CAS  Google Scholar 

  • Johnson, L. R.; Hiltbold, A. E., (1969). Arsenic content of soil and crops following use of methane arsenate herbicides. Soil Sci. Soc. Am. Proc., 33, 279–282 (4 pages).

    Article  CAS  Google Scholar 

  • Johnston, S. E.; Barnard, W. M., (1979). Comparative effectiveness of fourteen solutions for extracting arsenic from four western New York soils. Soil Sci. Soc. Am. J., 43, 304–308 (5 pages).

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A.; Pendias. H., (1984). Trace elements in soils and plants, CRC Press, Inc, Boca Raton, Florida, USA

    Google Scholar 

  • Kang, L. J.; Li, X. D.; Liu, J. H.; Zhang, X., (1996). The effect of arsenic on the growth of rice and residues in a loam paddy soil. J. Jilin Agri. Univ., 18, 58–61 (3 pages).

    Google Scholar 

  • Kapustka, L. A.; Lipton, J.; Galbraith, H.; Cacela, D.; Lejeune. K., (1995). Metal and arsenic impacts to soils, vegetation communities and wildlife habitat in southwest Montana uplands contaminated by smelter emissions: II. Laboratory phytotoxicity studies. Environ. Toxicol. Chem., 14(110), 1905–1912 (8 pages).

    Article  CAS  Google Scholar 

  • Liao, X. Y.; Chen, T. B.; Xie, H.; Liu, Y. R., (2005). Soil As contamination and its risk assessment in areas near the industrial districts of Chenzhou city, Southern China. Environ. Int., 31(6), 791–798 (8 pages).

    Article  CAS  Google Scholar 

  • Liebig, G. F., (1966). Arsenic. Champan, H. D. (Ed.), Diagnostic Criteria for Plants and Soils University of California Press, Riverside.,CA.

  • Liu, X.; Zhang, S.; Shan, X.; Zhu. Y., (2005). Toxicity of arsenate and arsenite on germination, seedling growth and amylolytic activity of wheat. Chemosphere., 61(2), 293–301 (9 pages).

    Article  CAS  Google Scholar 

  • Livesey, N. T.; Huang. P. M., (1981). Adsorption of arsenate by soils and its relation to selected chemical properties and anions. Soil Sci., 131(2), 88–94 (7 pages).

    Article  CAS  Google Scholar 

  • Li, R. Y.; Stroud, J. L.; Ma, J. F.; McGrath, S. P.; Zhao, F. J., (2009). Mitigation of arsenic accumulation in rice with water management and silicon fertilization. Environ. Sci. Tech., 43(10), 3778–3783 (5 pages).

    Article  CAS  Google Scholar 

  • MacLean, K. S.; Langille. W. M., (1981). Arsenic in orchard and potato soils and plant tissue. Plant Soil, 61(3), 413–418 (6 pages).

    Article  CAS  Google Scholar 

  • Mahimairaja, S.; Bolan, N. S.; Adriano, D. C.; Robnson. B., (2005). Arsenic contamination and its risk management n complex environmental settings. Ad. Agron., 86, 1–82 (82 pages).

    Article  CAS  Google Scholar 

  • Manning, B. A.; Goldberg. S., (1996). Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil Sci. Soc. Am. J., 60(1), 121–131 (11 pages)..

    Article  CAS  Google Scholar 

  • Marin, A. R.; Pzeshki, S. R.; Masschelen, P. H.; Choi, H. S., (1993a). Effects of diemthylarsenic acid (DMAA) on growth, tissue arsenic and photosynthesis of rice plants. J. Plant Nutr., 16(5), 865–880 (15 pages).

    Article  CAS  Google Scholar 

  • Marin, A. R.; Masscheleyn, P. H.; Patrick Jr, W. H., (1992). The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant Soil., 139(2), 175–183 (9 pages).

    Article  CAS  Google Scholar 

  • Marin, A. R.; Masscheleyn, P. H.; Patrick Jr, W. H., (1993b). Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice. Plant Soil., 152(2), 245–253 (9 pages).

    Article  CAS  Google Scholar 

  • Meharg, A. A.; Macnair, M. R.; (1992). Suppression of the High Affinity Phosphate Uptake System: A Mechanism of Arsenate Tolerance in Holcus lanatus L. J. Exp. Bot., 43(4), 519–524 (6 pages).

    Article  CAS  Google Scholar 

  • Mehlich, A.; (1984). Mehlich No. 3 soil test extractant: A modification of Mehlich No. 2 extractant: Commun soil Sci. Plant Anal., 15, 1409–1416 (8 pages).

    Article  CAS  Google Scholar 

  • Murphy, E. A.; Aucott, M., (1998). An assessment of the amounts of arsenical pesticides used historically in a geographically area. Sci. Total Environ., 21 8(2–3), 89–101 (13 pages).

    Article  CAS  Google Scholar 

  • NAS, (1977). Arsenic. National Academy of Sciences.The National Research Council, Washington, DC.

    Google Scholar 

  • NRC, (1977). Arsenic in medical and biological effects of environmental pollutants, National Academy of Sciences, Washington, DC, National Research Council.

    Google Scholar 

  • O’Neill, P., (1995). Arsenic. Alloway, B. J., (Eds). Heavy metals in soils. Blackie Academic and Professional.

  • Odanaka, Y.; Tsuchiya, N.; Matano, O.; Goto, S., (1987). Absorption, translocation and metabolism of the arsenical fungicides, iron methanearsonate and ammonium iron methanearsonate, in rice plants. J. Pestic. Sci., 1 2(2), 199–208 (10 pages).

    Article  CAS  Google Scholar 

  • Onken, B. M.; Adriano, D. C., (1997). Arsenic availability in soil with time under saturated and unsaturated conditions. Soil Sci Soc Am J., 61, 746–752 (7 pages).

    Article  CAS  Google Scholar 

  • Oscarson, D. W.; Huang, P. M.; Defosse, C.; Herbillon, A., (1981). Oxidative power of Mn (IV) and Fe (III) oxides with respect to As (III) in terrestrial and aquatic environments. Nature, 291, 50–51 (2 pages).

    Article  CAS  Google Scholar 

  • Pierce, M. L.; Moore, C. B., (1980). Adsorption of arsenite on amorphous iron hydroxide from dilute aqueous solution. Environ. Sci. Tech., 14(2), 214–216 (3 pages).

    Article  CAS  Google Scholar 

  • Pongratz, R., (1998). Arsenic speciation in environmental samples of contaminated soil. Sci. Total Environ., 224(1–3), 133–141 (9 pages).

    Article  CAS  Google Scholar 

  • Reeds, J. F.; Sturgis, M. B., (1936). Toxicity from arsenic compounds to rice on flooded soils. J. Am. Soc. Agron., 28, 432–436 (5 pages).

    Article  Google Scholar 

  • Sachs, R. M.; Michael, J. L., (1971). Comparative phytotoxicity among four arsenical herbicides. Weed Sci., 19(5), 558–564 (7 pages).

    CAS  Google Scholar 

  • Saha, G. C.; Ali, M. A.; (2007). Dynamics of arsenic in agricultural soils irrigated with arsenic contaminated groundwater in Bangladesh. Sci. Total Environ., 379(2–3), 180–189 (10 pages).

    Article  CAS  Google Scholar 

  • Sall, J.; Creighton, L.; Lehman, A., ( 2005 ). JMP start statistics. Third edition. Cary, NC: SAS Institute and Pacific Grove, CA.

  • Sarkar, D.; Datta, R.; Sharma, S.,, (2005). Fate and bioavailability of arsenic in organoarsenical pesticide-applied soils. Part-I: Incubation study. Chemosphere, 60(2), 188–195 (8 pages).

    Article  CAS  Google Scholar 

  • Schweizer, E. E., (1967). Toxicity of DSMA soil residues to cotton and rotational crops. Weeds, 15(1), 72–76 (5 pages).

    Article  CAS  Google Scholar 

  • Sckerl, M. M.; Frans, R. E., (1969). Translocation and metabolism of MMA-1#C in johnsongrass and Cotton. Weed Sci., 17(4), 421–427 (7 pages).

    CAS  Google Scholar 

  • Sheppard, S. C., (1992). Summary of phytotoxic levels of soil arsenic. Water Air Soil Pollut., 64(3–4), 539–550 (12 pages).

    Article  CAS  Google Scholar 

  • Smith, E.; Naidu, R.; Alston, A. M., (1998). Arsenic in soil environment: A review. Adv. Agron., 64, 149–195 (47 pages).

    Article  CAS  Google Scholar 

  • Sneller, E. F. C.; Van Heerwaaden, L. M.; Kraaijeveld-Smit, F. J. L.; Ten Bookum, W. M.; Koevoetes, P. L. M.; Schat, H.; Verkleij, J. A. C., (1999). Toxicity of arsenate in Silene vulgaris, accumulation and degradation of arsenate-induced phytochelatins. New Phytol., 144(2), 223–232 (10 pages).

    Article  CAS  Google Scholar 

  • Sneller, E. F. C.; Van Heerwaaden, L. M.; Schat, H.; Verkleij, J. A. C., (2000). Toxicity, metal uptake, and accumulation of phytochelatins in Silene vulgaris exposed to mixtures o cadmium and arsenate. Environ. Toxicol. Chem., 19(12), 2982–2986 (5 pages).

    CAS  Google Scholar 

  • Sparks, D. L., ( 1996 ). Methods of Soil Analysis: Part 3, Chemical Methods. Madison, Wis.: Soil Science Society of America: American Society of Agronomy.

  • Turpeinen, R.; Pantsar-Kallio, M.; Häggblom, M.; Kairesalo, T.,(1999). Influence of microbes on the mobilization, toxicity and biomethylation of arsenic in soil. Sci. Total Environ., 236(1–3), 173–180 (8 pages).

    Article  CAS  Google Scholar 

  • Ullah, S. M., (1998). Arsenic contamination of groundwater and irrigated soils of Bangladesh. IN Abstracts: International Conference on Arsenic Pollution of Ground Water in Bangladesh: causes, effects and remedies. 8–12 February 1998, Dhaka Community Hospital, Dhaka, Bangladesh.

    Google Scholar 

  • Urik, M.; Littera, P.; Sevc, J.; Kolenik, M.; Cernanský, S., (2009). Removal of arsenic (V) from aqueous solutions using chemically modified sawdust of spruce (Picea abies): Kinetics and isotherm studies. Int. J. Environ. Sci. Tech., 6(3), 451–456 (8 pages).

    CAS  Google Scholar 

  • US EPA, (1996). Test methods for evaluating solid waste. SW 846.3d ed. Office of solid waste and emergency response, Washington, DC.

    Google Scholar 

  • US EPA, (2009). Organic arsenicals; product cancellation order and amendments to terminate uses. Federal Register Environmental Documents. Avaiable at: http://www.epa.gov/fedrgstr/EPA-PEST/2009/September/Day-30/p23319.htm.

  • Von Endt, D. W.; Kearney, P. C.; Kaufman, D. D., (1968). Degradation of monosodium acid by soil microorganisms. J. Agric. Food Chem., 16(1), 17–20 (4 pages).

    Article  Google Scholar 

  • Walsh, L. M.; Summer, M. E.; Keeney, D. R., (1977). Occurrence and distribution of arsenic in soils and plants. Environ. Health Perspect., 19, 67–71 (5 pages).

    Article  CAS  Google Scholar 

  • Walsh, L. M.; Keeney, D. R., (1975). Behavior and phytotoxicity in inorganic arsenicals in soils, in: Woolson, EA., Arsenical pesticides. American Chemical Society Symposium Series, Washington,DC., 7, 35–52 (18 pages).

  • Watanabe, F. S.; Olsen, S. R., (1965). Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Am. Proc., 29, 677–678 (2 pages).

    Article  CAS  Google Scholar 

  • Wauchope, R. D., (1975). Fixation of arsenical herbicides, phosphate, and arsenate in alluvial soils. J. Environ. Qual., 4(3), 355–358 (4 pages).

    Article  CAS  Google Scholar 

  • Woolson, E. A.; Axley, J. H.; Kearney, P. C., (1973). The chemistry and phytotoxicity of arsenic in soils. II. Effcets of time and phosphorus. Soil Sci. Am. Proc., 37(2), 254–259 (6 pages).

    Article  Google Scholar 

  • Woolson, E. A.; Axley, J. H.; Kearney, P. C., (1971a). Correlation between available soil arsenic, estimated by six methods, and response of corn (Zea mays L.). Soil. Sci. Am. Proc., 35(1), 101–105 (5 pages).

    Article  CAS  Google Scholar 

  • Woolson, E. A., (1973). Arsenic phytotoxicity and uptake in six vegetable crops. Weed Sci., 21(6), 524–527 (4 pages).

    CAS  Google Scholar 

  • Woolson, E. A., (1983). Emissions, cycling and effects of arsenic in soil ecosystems. Fowler, B. A., (Ed). Biological and environmental effects of arsenic. Elsevier Science Publishers, New York, NY.

    Google Scholar 

  • Woolson, E. A.; Isensee, A. R., (1981). Soil residue accumulation from three applied arsenic sources. Weed Sci., 29(1), 17–21 (5 pages).

    CAS  Google Scholar 

  • Woolson, E. A.; Kearney, P. C., (1973). Persistence and reactions of 14C-cacodylic acid in soils. Environ. Sci. Tech., 7(1), 47–50 (4 pages).

    Article  CAS  Google Scholar 

  • Xu, J.; Thornton, I., (1985). Arsenic in garden soils and vegetable crops in Cornwall, England: implications for human health. Environ. Geochem. Health, 7(4), 131–133 (3 pages).

    Article  CAS  Google Scholar 

  • Zhu, Y. G.; Williams, P. N.; Meharg, A. A.; (2008). Exposure to inorganic arsenic from rice: A global health issue. Environ. Pollut., 154(2), 169–171 (3 pages).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sarkar Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quazi, S., Datta, R. & Sarkar, D. Effects of soil types and forms of arsenical pesticide on rice growth and development. Int. J. Environ. Sci. Technol. 8, 445–460 (2011). https://doi.org/10.1007/BF03326231

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326231

Keywords

Navigation