Nettle ash as a low cost adsorbent for the removal of nickel and cadmium from wastewater

Abstract

This study was focused on nettle ash as an alternative adsorbent for the removal of nickel (II) and cadmium (II) from wastewater. Batch experiments were conducted to determine the factors affecting adsorption of nickel (II) and cadmium (II). The adsorption process is affected by various parameters such as contact time, solution pH and adsorbent dose. The optimum pH required for maximum adsorption was found to be 6. The experimental data were tested using Langmuir, Freundlich and Tempkin equations. The data were fitted well to the Langmuir isotherm with monolayer adsorption capacity of 192.3 and 142.8 mg/g for nickel and cadmium, respectively. The adsorption kinetics were best described by the pseudo second order model. The cost of removal is expected to be quite low, as the adsorbent is cheap and easily available in large quantities. The present study showed that nettle ash was capable of removing nickel and cadmium ions from aqueous solution.

This is a preview of subscription content, access via your institution.

References

  1. Abdel-Ghani, N. T.; Hegazy, A. K.; El-Chaghaby, G. A., (2009). Typha domingensis leaf powder for decontamination of aluminium, iron, zinc and lead: Biosorption kinetics and equilibrium modeling. Int. J. Environ. Sci. Tech. 6(2), 243–248 (6pages).

    CAS  Google Scholar 

  2. Al-Rub, F. A. A., (2006). Biosorption of Zinc on Palm Tree Leaves: Equilibrium, Kinetics, and Thermodynamics Studies. Sep. Sci. Tech., 41(15), 3499–3515 (17 pages).

    Article  Google Scholar 

  3. Aman, T.; Kazi, A. A.; Sabri, M. U.; Bano, Q., (2008). Potato peels as solid waste for the removal of heavy metal copper (II) from waste water/industrial effluent. Colloid. Surface. B., 63(1), 116–121 (6 pages).

    Article  CAS  Google Scholar 

  4. Amir, H. M.; Dariush, N.; Forugh, V.; Shahrokh, N., (2005). Tea waste as and Adsorbent for Heavy Metal Removal from Industrial Wastewaters. Am. J. Appl. Sci., 2(1), 372–375 (4 pages).

    Article  Google Scholar 

  5. Apak, R.; Tutean, E.; Hugul, M.; Hizal, J., (1998). Heavy metal cation retention by unconventional sorbents (red muds and fly ashes). Water Res., 32(2), 430–440 (11 pages).

    Article  CAS  Google Scholar 

  6. Argun, M. E.; Dursun, S., (2008). Cadmium removal using activated pine bark. J. Int. Environ. Appl. Sci. 3(1), 37–42 (6 pages).

    CAS  Google Scholar 

  7. Aydyn, H.; Bulut, Y.; Yerlikaya, C., (2008). Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents. J. Environ. Manage., 87(1), 37–45 (9 pages).

    Article  Google Scholar 

  8. Babarinde, N. A. A., (2002). Adsorption of zinc (II) and cadmium (II) by. Coconut husk and goat Hair. J. Pure Appl. Sci., 5, 81–85 (5 pages).

    Google Scholar 

  9. Babel, S.; Opiso, E. M., (2007). Removal of Cr from synthetic wastewater by sorption into volcanic ash soil. Int. J. Environ. Sci. Tech. 4(1), 99–108 (10pages).

    Article  CAS  Google Scholar 

  10. Bayramoglu, G.; Aryca, M. Y., (2008). Removal of heavy mercury (II), cadmium (II) and zinc (II) metal ions by live and heat inactivated Lentinus edodes pellets. Chem. Eng. J. 143(1-3), 133–140 (8 pages).

    Article  CAS  Google Scholar 

  11. Celik, A.; Demirbas, A., (2005). Removal of heavy metal ions from aqueous solutions via adsorption onto modified lignin from pulping wastes. Energy Sour., 27, 1167–1177 (11 pages).

    Article  CAS  Google Scholar 

  12. Cimino, G; Passerini, A.; Toscano, G., (2000). Removal of toxic cations and Cr(VI) from aqueous solution by hazelnut shell. Water. Res., 34(11), 2955–2962 (8 pages).

    Article  CAS  Google Scholar 

  13. Chen, X. C.; Wang, Y. P.; Lin, Q.; Shi, J. Y.; Wu, W. X.; Chen, Y. X., (2005). Biosorption of copper(II) and zinc (II) from aqueous solution by Pseudomonas putida CZ1, Colloid. Surf. B., 46(2), 101–107 (7 pages).

    Article  CAS  Google Scholar 

  14. Demirbas, A.; Pehlivan, E.; Gode, F.; Altun, T.; Arslan, G,(2005). Adsorption of Cu(II), Zn (II), Ni (II), Pb (II), and Cd (II) from aqueous solution on Amberlite IR-120 synthetic resin. J. Colloid Interface Sci. Surf., 282(1), 20–25 (6 pages).

    Article  CAS  Google Scholar 

  15. Gode, F.; Pehlivan, E., (2006). Removal of chromium(III) from aqueous solutions using Lewatit S 100: The effect of pH, time, metal concentration and temperature. J. Hazard. Mater., 136(2), 330–337 (8 pages).

    Article  CAS  Google Scholar 

  16. Hui, K. S.; Chao, C. Y. H.; Kot, S. C., (2005). Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. J. Hazard. Mater., 127(1-3), 89–101 (13 pages).

    Article  CAS  Google Scholar 

  17. Igwe, J. C.; Abia, A. A.; Ibeh, C. A., (2008). Adsorption kinetics and intraparticulate diffusivities of Hg, As and Pb ions on unmodified and thiolated coconut fiber. Int. J. Environ. Sci. Tech., 5(1), 83–92 (10pages).

    CAS  Google Scholar 

  18. Jayaram, K.; Murthy, I. Y. L. N.; Lalhruaitluanga, H.; Prasad, M. N. V., (2009). Biosorption of lead from aqueous solution by seed powder of Strychnos potatorum L. Colloid Surf. B., 71(2), 248–254 (7 pages).

    Article  CAS  Google Scholar 

  19. Kadirvelu, K.; Thamaraiselvi, K.; Namasivayam, C., (2001). Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresour. Tech., 76(1), 63–65 (3 pages).

    Article  CAS  Google Scholar 

  20. Kalavathy, M. H.; Karthikeyan, T.; Rajgopal, S.; Miranda, L. R., (2005). Kinetic and isotherm studies of Cu (II) adsorption onto H3PO4-activated rubber wood sawdust. J. Colloid Interface Sci., 292(2), 354–362 (9 pages).

    Article  CAS  Google Scholar 

  21. Kefala, M. I.; Zouboulis, A. I.; Matis, K. I., (1999). Biosorption of cadmium ions by Actinomycetes and separation by flotation. Environ. Pollut., 104(2), 283–293 (11 pages).

    Article  CAS  Google Scholar 

  22. Krishnani, K. K.; Meng, X.; Christodoulatos, C.; Boddu, V. M., (2008). Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. J. Hazard. Mater., 153(3), 1222–1234 (13 pages).

    Article  CAS  Google Scholar 

  23. Kumar, Y. P.; King, P.; Prasad, V. S. R. K., (2006). Equilibrium and kinetic studies for the biosorption system of copper(II) ion from aqueous solution using Tectona grandis L.f. leaves powder. J. Hazard. Mater., 137(2), 1211–1217 (7 pages).

    Article  Google Scholar 

  24. Lalhruaitluanga, H.; Jayaram, K.; Prasad, M. N. V.; Kumar, K. K., (2010). Lead (II) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburgh (bamboo) A comparative study. J. Hazard. Mater., 175(1-3), 311–318 (8 pages).

    Article  CAS  Google Scholar 

  25. Langmuir, I., (1916). The constitution and fundamental properties of solids and liquids, J. Am. Chem. Soc., 38, 2221–2295 (75 pages).

    Article  CAS  Google Scholar 

  26. Lugo-Lugo, V.; Hernandez-Lopez, S.; Barrera-Diaz, C., (2009). A comparative study of natural, formaldehyde-treated and copolymer-grafted orange peel for Pb (II) adsorption under batch and continuous mode. J. Hazard. Mater., 161(2-3), 1255–1264 (10 pages).

    Article  CAS  Google Scholar 

  27. Mahvi, A. H., (2008). Application of agricutural fibers in pollution removal from aqueous solution. Int. J. Environ. Sci. Tech., 5(2), 275–285 (11 pages).

    CAS  Google Scholar 

  28. Malakootian, M.; Almasi, A.; Hossaini, H., (2008). Pb and Co removal from paint industries effluent using wood ash. Int. J. Environ. Sci. Tech., 5(2), 217–222 (6 pages).

    CAS  Google Scholar 

  29. Malakootian, M.; Nouri, J.; Hossaini, H., (2009). Removal of heavy metals from paint industry’s wastewater using Leca as an available adsorbent. Int. J. Environ. Sci. Tech., 6(2), 183–190 (8 pages).

    CAS  Google Scholar 

  30. Mc Kay, G.; Ho, Y. S., (1999). Pseudo-second order model for sorption processes. Process Biochem., 34(5), 451–465 (15 pages).

    Article  Google Scholar 

  31. Nadeem, R.; Nasir, M. H.; Hanif, M. S., (2009). Pb (II) sorption by acidically modified Cicer arientinum biomass. Chem. Eng. J., 150(1), 40–48 (9 pages).

    Article  CAS  Google Scholar 

  32. Nwuche, C. O.; Ugoji, E. O., (2008). Effects of heavy metal pollution on the soil microbial activity. Int. J. Environ. Sci. Tech., 5(3), 409–414 (6 pages).

    CAS  Google Scholar 

  33. Onundi, Y. B.; Mamun, A. A.; Al Khatib, M. F.; Ahmed, Y. M., (2010). Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm shell activated carbon. Int. J. Environ. Sci. Tech., 7(4), 751–758 (8 pages).

    CAS  Google Scholar 

  34. Pagnanelli, F.; Esposito, L.; Veglio, F., (2003). Metal speciation and pH effect on Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans: Langmuir-type empirical model. Water Res., 37(3), 627–633 (7 pages).

    Article  CAS  Google Scholar 

  35. Pan, S.; Lin, C.; Tseng, D., (2003). Reusing sewage sludge ash as adsorbent for copper removal from wastewater. Res. Conserv. Recycl., 39(1), 79–90 (12 pages).

    Article  Google Scholar 

  36. Pehlivan, E.; Arslan, G., (2007). Removal of metal ions using lignite in aqueous solution—Low cost biosorbents. Fuel Process Tech., 88(1), 99–106 (8 pages).

    Article  CAS  Google Scholar 

  37. Prasad, K.; Gopikrishna, P.; Kala, R.; Rao, T. P.; Naidu, G. R. K., (2006). Solid phase extraction vis-à-vis coprecipitation preconcentration of cadmium and lead from soils onto 5,7-dibromoquinoline-8-ol embedded benzophenone and determination by FAAS. Talanta, 69(4), 938–945 (8 pages).

    Article  CAS  Google Scholar 

  38. Qi, B. C.; Aldrich, C., (2008). Biosorption of heavy metals from aqueous solutions with tobacco dust. Biores. Tech., 99(1-3), 5595–5601 (7 pages).

    Article  CAS  Google Scholar 

  39. Radhika, V.; Subramanian, S.; Natarajan, K. A., (2006). Bioremediation of zinc using Desulfotomaculum nigrificans: Bioprecipitation and characterization studies. Water Res., 40(19), 3628–3636 (9 pages).

    Article  CAS  Google Scholar 

  40. Saeed, A.; Iqbala, M.; Akhtar, M. W., (2005). Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk). J. Hazard. Mater., 117(1), 65–73 (9 pages).

    Article  CAS  Google Scholar 

  41. Shah, B. A.; Shah, A. V.; Singh, R. R., (2009). Sorption isotherms and kinetics of chromium uptake from wastewater using natural sorbent material. Int. J. Environ. Sci. Tech., 6(1), 77–90 (14 pages).

    CAS  Google Scholar 

  42. Volesky, Z. R.; Holan, A., (1995). Biosorption of heavy metals. Biotech. Prog., 11, 235–250 (16 pages).

    Article  CAS  Google Scholar 

  43. Weng, C. H.; Huang, C. P., (2004). Adsorption characteristics of Zn(II) from dilute aqueous solution by fly ash. Colloid. Surf. A., 247(1-3), 137–143 (7 pages).

    Article  CAS  Google Scholar 

  44. Yu, B.; Zhang, Y.; Shukla, A.; Shukla, S. S.; Dorris, K. L., (2001). The removal of heavy metals from aqueous solutions by sawdust adsorption — removal of lead and comparison of its adsorption with copper. J. Hazard. Mater., 84(1), 83–94 (12 pages).

    Article  CAS  Google Scholar 

  45. Zvinowanda, C. M.; Okonkwo, J. O.; Shabalala, P. N.; Agyei, N. M., (2009). A novel adsorbent for heavy metal remediation in aqueous environments. Int. J. Environ. Sci. Tech., 6(3), 425–434 (10 pages).

    CAS  Google Scholar 

  46. Zulkali, M. M. D.; Ahmad, A. L.; Norulakmal, N. H., (2006). Oryza sativa L. husk as heavy metal adsorbent: Optimization with lead as model solution. Biores. Tech., 97(1), 21–25 (5 pages).

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to H. Zavvar Mousavi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mousavi, H.Z., Seyedi, S.R. Nettle ash as a low cost adsorbent for the removal of nickel and cadmium from wastewater. Int. J. Environ. Sci. Technol. 8, 195–202 (2011). https://doi.org/10.1007/BF03326209

Download citation

Keywords

  • Adsorption
  • Heavy metal ions
  • Isotherm
  • Kinetic
  • Nettle ash