Advertisement

Nettle ash as a low cost adsorbent for the removal of nickel and cadmium from wastewater

Article

Abstract

This study was focused on nettle ash as an alternative adsorbent for the removal of nickel (II) and cadmium (II) from wastewater. Batch experiments were conducted to determine the factors affecting adsorption of nickel (II) and cadmium (II). The adsorption process is affected by various parameters such as contact time, solution pH and adsorbent dose. The optimum pH required for maximum adsorption was found to be 6. The experimental data were tested using Langmuir, Freundlich and Tempkin equations. The data were fitted well to the Langmuir isotherm with monolayer adsorption capacity of 192.3 and 142.8 mg/g for nickel and cadmium, respectively. The adsorption kinetics were best described by the pseudo second order model. The cost of removal is expected to be quite low, as the adsorbent is cheap and easily available in large quantities. The present study showed that nettle ash was capable of removing nickel and cadmium ions from aqueous solution.

Keywords

Adsorption Heavy metal ions Isotherm Kinetic Nettle ash 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdel-Ghani, N. T.; Hegazy, A. K.; El-Chaghaby, G. A., (2009). Typha domingensis leaf powder for decontamination of aluminium, iron, zinc and lead: Biosorption kinetics and equilibrium modeling. Int. J. Environ. Sci. Tech. 6(2), 243–248 (6pages).Google Scholar
  2. Al-Rub, F. A. A., (2006). Biosorption of Zinc on Palm Tree Leaves: Equilibrium, Kinetics, and Thermodynamics Studies. Sep. Sci. Tech., 41(15), 3499–3515 (17 pages).CrossRefGoogle Scholar
  3. Aman, T.; Kazi, A. A.; Sabri, M. U.; Bano, Q., (2008). Potato peels as solid waste for the removal of heavy metal copper (II) from waste water/industrial effluent. Colloid. Surface. B., 63(1), 116–121 (6 pages).CrossRefGoogle Scholar
  4. Amir, H. M.; Dariush, N.; Forugh, V.; Shahrokh, N., (2005). Tea waste as and Adsorbent for Heavy Metal Removal from Industrial Wastewaters. Am. J. Appl. Sci., 2(1), 372–375 (4 pages).CrossRefGoogle Scholar
  5. Apak, R.; Tutean, E.; Hugul, M.; Hizal, J., (1998). Heavy metal cation retention by unconventional sorbents (red muds and fly ashes). Water Res., 32(2), 430–440 (11 pages).CrossRefGoogle Scholar
  6. Argun, M. E.; Dursun, S., (2008). Cadmium removal using activated pine bark. J. Int. Environ. Appl. Sci. 3(1), 37–42 (6 pages).Google Scholar
  7. Aydyn, H.; Bulut, Y.; Yerlikaya, C., (2008). Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents. J. Environ. Manage., 87(1), 37–45 (9 pages).CrossRefGoogle Scholar
  8. Babarinde, N. A. A., (2002). Adsorption of zinc (II) and cadmium (II) by. Coconut husk and goat Hair. J. Pure Appl. Sci., 5, 81–85 (5 pages).Google Scholar
  9. Babel, S.; Opiso, E. M., (2007). Removal of Cr from synthetic wastewater by sorption into volcanic ash soil. Int. J. Environ. Sci. Tech. 4(1), 99–108 (10pages).CrossRefGoogle Scholar
  10. Bayramoglu, G.; Aryca, M. Y., (2008). Removal of heavy mercury (II), cadmium (II) and zinc (II) metal ions by live and heat inactivated Lentinus edodes pellets. Chem. Eng. J. 143(1-3), 133–140 (8 pages).CrossRefGoogle Scholar
  11. Celik, A.; Demirbas, A., (2005). Removal of heavy metal ions from aqueous solutions via adsorption onto modified lignin from pulping wastes. Energy Sour., 27, 1167–1177 (11 pages).CrossRefGoogle Scholar
  12. Cimino, G; Passerini, A.; Toscano, G., (2000). Removal of toxic cations and Cr(VI) from aqueous solution by hazelnut shell. Water. Res., 34(11), 2955–2962 (8 pages).CrossRefGoogle Scholar
  13. Chen, X. C.; Wang, Y. P.; Lin, Q.; Shi, J. Y.; Wu, W. X.; Chen, Y. X., (2005). Biosorption of copper(II) and zinc (II) from aqueous solution by Pseudomonas putida CZ1, Colloid. Surf. B., 46(2), 101–107 (7 pages).CrossRefGoogle Scholar
  14. Demirbas, A.; Pehlivan, E.; Gode, F.; Altun, T.; Arslan, G,(2005). Adsorption of Cu(II), Zn (II), Ni (II), Pb (II), and Cd (II) from aqueous solution on Amberlite IR-120 synthetic resin. J. Colloid Interface Sci. Surf., 282(1), 20–25 (6 pages).CrossRefGoogle Scholar
  15. Gode, F.; Pehlivan, E., (2006). Removal of chromium(III) from aqueous solutions using Lewatit S 100: The effect of pH, time, metal concentration and temperature. J. Hazard. Mater., 136(2), 330–337 (8 pages).CrossRefGoogle Scholar
  16. Hui, K. S.; Chao, C. Y. H.; Kot, S. C., (2005). Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. J. Hazard. Mater., 127(1-3), 89–101 (13 pages).CrossRefGoogle Scholar
  17. Igwe, J. C.; Abia, A. A.; Ibeh, C. A., (2008). Adsorption kinetics and intraparticulate diffusivities of Hg, As and Pb ions on unmodified and thiolated coconut fiber. Int. J. Environ. Sci. Tech., 5(1), 83–92 (10pages).Google Scholar
  18. Jayaram, K.; Murthy, I. Y. L. N.; Lalhruaitluanga, H.; Prasad, M. N. V., (2009). Biosorption of lead from aqueous solution by seed powder of Strychnos potatorum L. Colloid Surf. B., 71(2), 248–254 (7 pages).CrossRefGoogle Scholar
  19. Kadirvelu, K.; Thamaraiselvi, K.; Namasivayam, C., (2001). Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Bioresour. Tech., 76(1), 63–65 (3 pages).CrossRefGoogle Scholar
  20. Kalavathy, M. H.; Karthikeyan, T.; Rajgopal, S.; Miranda, L. R., (2005). Kinetic and isotherm studies of Cu (II) adsorption onto H3PO4-activated rubber wood sawdust. J. Colloid Interface Sci., 292(2), 354–362 (9 pages).CrossRefGoogle Scholar
  21. Kefala, M. I.; Zouboulis, A. I.; Matis, K. I., (1999). Biosorption of cadmium ions by Actinomycetes and separation by flotation. Environ. Pollut., 104(2), 283–293 (11 pages).CrossRefGoogle Scholar
  22. Krishnani, K. K.; Meng, X.; Christodoulatos, C.; Boddu, V. M., (2008). Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. J. Hazard. Mater., 153(3), 1222–1234 (13 pages).CrossRefGoogle Scholar
  23. Kumar, Y. P.; King, P.; Prasad, V. S. R. K., (2006). Equilibrium and kinetic studies for the biosorption system of copper(II) ion from aqueous solution using Tectona grandis L.f. leaves powder. J. Hazard. Mater., 137(2), 1211–1217 (7 pages).CrossRefGoogle Scholar
  24. Lalhruaitluanga, H.; Jayaram, K.; Prasad, M. N. V.; Kumar, K. K., (2010). Lead (II) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburgh (bamboo) A comparative study. J. Hazard. Mater., 175(1-3), 311–318 (8 pages).CrossRefGoogle Scholar
  25. Langmuir, I., (1916). The constitution and fundamental properties of solids and liquids, J. Am. Chem. Soc., 38, 2221–2295 (75 pages).CrossRefGoogle Scholar
  26. Lugo-Lugo, V.; Hernandez-Lopez, S.; Barrera-Diaz, C., (2009). A comparative study of natural, formaldehyde-treated and copolymer-grafted orange peel for Pb (II) adsorption under batch and continuous mode. J. Hazard. Mater., 161(2-3), 1255–1264 (10 pages).CrossRefGoogle Scholar
  27. Mahvi, A. H., (2008). Application of agricutural fibers in pollution removal from aqueous solution. Int. J. Environ. Sci. Tech., 5(2), 275–285 (11 pages).Google Scholar
  28. Malakootian, M.; Almasi, A.; Hossaini, H., (2008). Pb and Co removal from paint industries effluent using wood ash. Int. J. Environ. Sci. Tech., 5(2), 217–222 (6 pages).Google Scholar
  29. Malakootian, M.; Nouri, J.; Hossaini, H., (2009). Removal of heavy metals from paint industry’s wastewater using Leca as an available adsorbent. Int. J. Environ. Sci. Tech., 6(2), 183–190 (8 pages).Google Scholar
  30. Mc Kay, G.; Ho, Y. S., (1999). Pseudo-second order model for sorption processes. Process Biochem., 34(5), 451–465 (15 pages).CrossRefGoogle Scholar
  31. Nadeem, R.; Nasir, M. H.; Hanif, M. S., (2009). Pb (II) sorption by acidically modified Cicer arientinum biomass. Chem. Eng. J., 150(1), 40–48 (9 pages).CrossRefGoogle Scholar
  32. Nwuche, C. O.; Ugoji, E. O., (2008). Effects of heavy metal pollution on the soil microbial activity. Int. J. Environ. Sci. Tech., 5(3), 409–414 (6 pages).Google Scholar
  33. Onundi, Y. B.; Mamun, A. A.; Al Khatib, M. F.; Ahmed, Y. M., (2010). Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm shell activated carbon. Int. J. Environ. Sci. Tech., 7(4), 751–758 (8 pages).Google Scholar
  34. Pagnanelli, F.; Esposito, L.; Veglio, F., (2003). Metal speciation and pH effect on Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans: Langmuir-type empirical model. Water Res., 37(3), 627–633 (7 pages).CrossRefGoogle Scholar
  35. Pan, S.; Lin, C.; Tseng, D., (2003). Reusing sewage sludge ash as adsorbent for copper removal from wastewater. Res. Conserv. Recycl., 39(1), 79–90 (12 pages).CrossRefGoogle Scholar
  36. Pehlivan, E.; Arslan, G., (2007). Removal of metal ions using lignite in aqueous solution—Low cost biosorbents. Fuel Process Tech., 88(1), 99–106 (8 pages).CrossRefGoogle Scholar
  37. Prasad, K.; Gopikrishna, P.; Kala, R.; Rao, T. P.; Naidu, G. R. K., (2006). Solid phase extraction vis-à-vis coprecipitation preconcentration of cadmium and lead from soils onto 5,7-dibromoquinoline-8-ol embedded benzophenone and determination by FAAS. Talanta, 69(4), 938–945 (8 pages).CrossRefGoogle Scholar
  38. Qi, B. C.; Aldrich, C., (2008). Biosorption of heavy metals from aqueous solutions with tobacco dust. Biores. Tech., 99(1-3), 5595–5601 (7 pages).CrossRefGoogle Scholar
  39. Radhika, V.; Subramanian, S.; Natarajan, K. A., (2006). Bioremediation of zinc using Desulfotomaculum nigrificans: Bioprecipitation and characterization studies. Water Res., 40(19), 3628–3636 (9 pages).CrossRefGoogle Scholar
  40. Saeed, A.; Iqbala, M.; Akhtar, M. W., (2005). Removal and recovery of lead(II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk). J. Hazard. Mater., 117(1), 65–73 (9 pages).CrossRefGoogle Scholar
  41. Shah, B. A.; Shah, A. V.; Singh, R. R., (2009). Sorption isotherms and kinetics of chromium uptake from wastewater using natural sorbent material. Int. J. Environ. Sci. Tech., 6(1), 77–90 (14 pages).Google Scholar
  42. Volesky, Z. R.; Holan, A., (1995). Biosorption of heavy metals. Biotech. Prog., 11, 235–250 (16 pages).CrossRefGoogle Scholar
  43. Weng, C. H.; Huang, C. P., (2004). Adsorption characteristics of Zn(II) from dilute aqueous solution by fly ash. Colloid. Surf. A., 247(1-3), 137–143 (7 pages).CrossRefGoogle Scholar
  44. Yu, B.; Zhang, Y.; Shukla, A.; Shukla, S. S.; Dorris, K. L., (2001). The removal of heavy metals from aqueous solutions by sawdust adsorption — removal of lead and comparison of its adsorption with copper. J. Hazard. Mater., 84(1), 83–94 (12 pages).CrossRefGoogle Scholar
  45. Zvinowanda, C. M.; Okonkwo, J. O.; Shabalala, P. N.; Agyei, N. M., (2009). A novel adsorbent for heavy metal remediation in aqueous environments. Int. J. Environ. Sci. Tech., 6(3), 425–434 (10 pages).Google Scholar
  46. Zulkali, M. M. D.; Ahmad, A. L.; Norulakmal, N. H., (2006). Oryza sativa L. husk as heavy metal adsorbent: Optimization with lead as model solution. Biores. Tech., 97(1), 21–25 (5 pages).CrossRefGoogle Scholar

Copyright information

© Islamic Azad University 2011

Authors and Affiliations

  1. 1.Department of Chemistry, College of ScienceUniversiy of SemnanSemnanIran

Personalised recommendations