Skip to main content
Log in

Energy efficiency and environmental impact of biogas utilization in landfills

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

This study investigates the utilization of landfill biogas as a fuel for electrical power generation. Landfills can be regarded as conversion biogas plants to electricity, not only covering internal consumptions of the facility but contributing in the power grid as well. A landfill gas plant consists of a recovery and a production system. The recovery of landfill gas is an area of vital interest since it combines both alternative energy production and reduction of environmental impact through reduction of methane and carbon dioxide, two of the main greenhouse gases emissions. This study follows two main objectives. First, to determine whether active extraction of landfill gas in the examined municipal solid waste sites would produce adequate electric power for utilisation and grid connection and second, to estimate the reduction of sequential greenhouse gases emissions. However, in order to optimize the designing of a plant fed by biogas, it is necessary to quantify biogas production over several years. The investigation results of energy efficiency and environmental impact of biogas utilization in landfills are considering satisfactory enough both in electric energy production and in contribution to greenhouse gases mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Masri, M. R., (2001). Changes in Biogas production due to different ratios of some animal and agricultural wastes. Bioresour. Tech., 77(1), 97–100 (4 pages).

    Article  CAS  Google Scholar 

  • Augenstein, D.; Pacey, J., (1992). Landfill gas energy utilization: Technology options and case studies. Prepared by EMCON Associates, San Jose, CA. Prepared for U.S. Environmental Protection Agency, Office of Research and Development. EPA-600/R-92-116. Washington, D.C.

  • Babel, S.; Sae-Tang, J.; Pecharaply, A., (2009). Anaerobic co-digestion of sewage and brewery sludge for biogas production and land application. Int. J. Environ. Sci. Tech., 6(1), 131–140 (10 pages).

    CAS  Google Scholar 

  • Banu, J. R.; Kaliappan, S.; Yeom, I. T., (2007). Treatment of domestic wastewater using upflow anaerobic sludge blanket reactor. Int. J. Environ. Sci. Tech., 4(3), 363–370 (8 pages).

    CAS  Google Scholar 

  • Borjesson, P.; Berglund, M., (2006). Environmental systems analysis of biogas systems — Part I: Fuel-cycle emissions. Biomass. Bioenerg., 30(5), 469–485 (17 pages).

    Article  Google Scholar 

  • Bove, R.; Lunghi P., (2006). Electric power generation from landfill gas using traditional and innovative technologies. Energ. Convers. Manage., 47(11–12), 1391–1401 (11 pages).

    Article  CAS  Google Scholar 

  • Constant, M.; Naveau, H.; Ferrero, G.L.; Nyns, E.J., (1989). Biogas end-use in European community. Elsevier Applied Science, London and New York, 345.

    Google Scholar 

  • Desideri, U.; Di Maria, F.; Leonardi, D.; Proietti S., (2003). Sanitary landfill energetic potential analysis: A real case study. Energ. Convers. Manage., 44(12), 1969–1981 (13 pages).

    Article  CAS  Google Scholar 

  • Findikakis, A. N.; Papelis, C.; Halvadakis, C. P.; Leckie, J. O., (1988). Modelling gas production in managed sanitary landfills. Waste Manage. Res., 6(3), 115–123 (9 pages).

    CAS  Google Scholar 

  • Francese, A. P.; Francesel, A. P.; Aboagye-Mathiesen, G.; Olesen, T.; Córdoba, P. R.; Sineriz, F., (2000). Feeding approaches for biogas production from animal wastes and industrial effluents. World. J. Microb. Biot., 16(2), 147–150 (4 pages).

    Article  CAS  Google Scholar 

  • Goel, B.; Pant, D.C.; Kishore, V. V. N., (2001). Two-phase anaerobic digestion of spent tea leaves for biogas and manure generation. Bioresour. Tech., 80, 153–156 (4 pages).

    Article  CAS  Google Scholar 

  • Kashyap, D. R.; Dadhich, K. S.; Sharma, S. K., (2003). Biomethanation under Rsychrophilic Conditions: A review. Bioresour. Tech, 87(2), 147–153 (7 pages).

    Article  CAS  Google Scholar 

  • Kumar, S.; Mondal, A.N.; Gaikwad, S. A.; Devotta, S.; Singh, R. N., (2004). Qualitative assessment of methane emission inventory from municipal solid waste disposal sites: A case study. Atmos. Environ., 38(29), 4921–4929 (9 pages).

    Article  CAS  Google Scholar 

  • Malik, T. I.; Weinberg, F. J.; Boden, J. C.; Fuller, J., (1987). Combustion in crater bed. Combust. Flame., 68(2), 155–165 (11 pages).

    Article  CAS  Google Scholar 

  • Manna, L.; Zanetti, M. C.; Genon, G., (1999). Modelling biogas production at landfill Site. Res. Conserv. Recycl., 26(1), 1–14 (14 pages).

    Article  Google Scholar 

  • McKendry, P., (2002). Energy production from biomass (part 1): Overview of biomass. Bioresour. Tech., 83(11), 37–46 (10 pages).

    Article  CAS  Google Scholar 

  • Murphy, J. D.; Mc Keogh, E., (2004). Technical, economic and environmental analysis of energy production from municipal solid waste. Renew. Energ., 29(7), 1043–1057 (14 pages).

    Article  CAS  Google Scholar 

  • Noyola, A.; Manuel, J.; Sagastume, M.; Hernandez, J. L., (2006). Treatment of biogas produced in anaerobic reactors for domestic wastewater: Odor control and energy/resource Recovery. J. Rev. Environ. Sci. Biotech., 5(1), 93–114 (22 pages).

    Article  CAS  Google Scholar 

  • Nwuche, C. O.; Ugoji, E. O., (2008). Effects of heavy metal pollution on the soil microbial activity. Int. J. Environ. Sci. Tech., 5(3), 409–414 (6 pages).

    Article  CAS  Google Scholar 

  • Ogundiran, O. O.; Afolabi, T. A., (2008). Assessment of the physicochemical parameters and heavy metals’ toxicity of leachates from municipal solid waste open dumpsite. Int. J. Environ. Sci. Tech., 5(2), 243–250 (8 pages).

    Article  CAS  Google Scholar 

  • Panjeshahi, M. H.; Ataei, A., (2008). Application of an environmentally optimum cooling water system designin water and energy conservation. Int. J. Environ. Sci. Tech., 5(2), 251–262 (12 pages).

    Article  Google Scholar 

  • Paraskaki, I.; Lazaridis, M., (2005). Quantification of landfill emissions to air: A case study of the ano liosia landfill site in the greater Athens area. Waste. Manag. Res., 23(3), 199–208 (10 pages).

    Article  CAS  Google Scholar 

  • Pierce, J., (2004). Development of a 50 MW landfill gas fired power plant at South Korea’s largest landfill. SWANA 27th. LFG Conference, March, San Antonio, Texas.

  • Qin, W.; Egolfopoulos, F. N.; Tsotsis, T. T, (2001). Fundamental and environmental aspects of landfill gas utilization for power generation.Chem. Eng. J., 82(1–3), 157–172 (16 pages).

    Article  CAS  Google Scholar 

  • Ravena, R. P. J. M.; Gregersenb, K. H., (2007). Biogas plants in Denmark: Successes and setbacks. Renew. Sust. Energ. Rev., 11(1), 116–132 (17 pages).

    Article  Google Scholar 

  • Shin, H.; Park, J. W.; Kim, H. S.; Shin, E. S., (2005). Environmental and economic assessment of landfill gas electricity generation in Korea using LEAP model. Energ. Policy., 33(10), 1261–1270 (10 pages).

    Article  Google Scholar 

  • Singhal, V.; Rai, J. P. N., (2003). Biogas production from water hyacinth and channel grass used for phytoremedation of industrial effluents. Bioresour. Tech., 86(3), 221–225 (5 pages).

    Article  CAS  Google Scholar 

  • Spokas, K.; Bogner, J.; Chanton, J. P.; Morcet, M.; Aran, C.; Graff, C.; Moreau-Le Golvan, Y.; Hebe, I., (2006). Methane mass balance at three landfill sites: What is the efficiency of capture by gas collection systems? Waste Manage., 26(5), 516–525 (10 pages).

    Article  CAS  Google Scholar 

  • Suthar, S.; Singh, S., (2008). Vermicomposting of domestic waste by using two epigeic earthworms (perionyx excavatus and perionyx sansibaricus). Int. J. Environ. Sci. Tech., 5(1), 99–106 (8 pages).

    Article  CAS  Google Scholar 

  • Taleghani, G.; Shabani Kia, A., (2004). Technical-economical analysis of the saveh viogas power plant. Renew. Energ., 30(3), 441–446 (6 pages).

    Article  Google Scholar 

  • Tsagarakis, K.P.; Papadogiannis, C., (2006). Technical and economic evaluation of the biogas utilization for energy production at iraklio municipality, Greece. Energ. Convers. Manage., 47(7–8), 844–857 (14 pages).

    Article  Google Scholar 

  • Tsai, W. T., (2007). Bioenergy from landfill gas (LFG) in Taiwan. Renew. Sust. Energ. Rev., 11(2), 331–344 (14 pages).

    Article  Google Scholar 

  • Tsai, W. T.; Chou, Y. H., (2006). An overview of renewable energy utilization from municipal solid waste (MSW) incineration in Taiwan. Renew. Sust. Energ. Rev., 10(5), 491–502 (12 pages).

    Article  Google Scholar 

  • Turn, S. Q.; Bain, R. L.; Kinoshita, C. M., (2002). Biomass gasification for combined heat and power in the cane sugar industry. Int. Sugar. J., 104(1242), 268–273 (6 pages).

    CAS  Google Scholar 

  • Wang Jenshi B.; Chou M. Sh., (2000). Kinetics of atalytic oxidation of benzene, n-hexane and emission gas from a refinery oil/water separator over a chromium oxide catalyst. Air. Waste. Manage., 50(2), 227–233 (7 pages).

    Article  Google Scholar 

  • Weinberg, F. J., (1986). Combustion in heat-recirculating burners in advance combustion methods. Academic Press, London and New York.

    Google Scholar 

  • Willumsen, h., (1990). Landfill gas. Res. Conserv. Recycl., 4(1–2), 121–133 (13 pages).

    Article  Google Scholar 

  • Yedla, S.; Parikh K. J., (2002). Development of a purpose built landfill system for the control of methane emissions from municipal solid waste. Waste Manage., 22(2), 501–506 (6 pages).

    Article  CAS  Google Scholar 

  • Zamorano, M.; Ignacio Pérez Pérez, J.; Aguilar Pavés, I.; Ramos, R. A., (2007). Study of the energy potential of the biogas produced by an urban waste landfill in Southern Spain. Renew. Sust. Energ. Rev., 11(5), 909–922 (14 pages).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Karapidakis Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karapidakis, E.S., Tsave, A.A., Soupios, P.M. et al. Energy efficiency and environmental impact of biogas utilization in landfills. Int. J. Environ. Sci. Technol. 7, 599–608 (2010). https://doi.org/10.1007/BF03326169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326169

Keywords

Navigation