Skip to main content
Log in

Simulation of global warming effect on outdoor thermal comfort conditions

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

In the coming decades, global warming and increase in temperature, in different regions of the world, may change indoor and outdoor thermal comfort conditions and human health. The aim of this research was to study the effects of global warming on thermal comfort conditions in indoor ambiences in Iran. To study the increase in temperature, model for assessment of greenhouse-gas induced climate change scenario generator compound model has been used together with four scenarios and to estimate thermal comfort conditions, adaptive model of the American Society of Heating, Refrigerating and Air-conditioning Engineers has been used. In this study, Iran was divided into 30 zones, outdoor conditions were obtained using meteorological data of 80 climatological stations and changes in neutral comfort conditions in 2025, 2050, 2075 and 2100 were predicted. In accordance with each scenario, findings from this study showed that temperature in the 30 zones will increase by 2100 to between 3.4 °C and 5.6 °C. In the coming decades and in the 30 studied zones, neutral comfort temperature will increase and be higher and more intense in the central and desert zones of Iran. The low increase in this temperature will be connected to the coastal areas of the Caspian and Oman Sea in southeast Iran. This increase in temperature will be followed by a change in thermal comfort and indoor energy consumption from 8.6 % to 13.1 % in air conditioning systems. As a result, passive methods as thermal inertia are proposed as a possible solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbaspour, M.; Jafari, M. J.; Mansouri, N.; Moattar, F.; Nouri, N.; Allahyari, M., (2008). Thermal comfort evaluation in Tehran metro using Relative Warmth Index. Int. J. Environ. Sci. Tech., 5(3), 297–304 (8 pages).

    Article  Google Scholar 

  • ASHRAE Standard 55. (2004). Thermal Environmental Conditions for Human Occupancy (ANSI Approved).

  • Berry, H. L.; Bowen, K.; Kjellstrom, T., (2009). Climate change and mental health: A causal pathways framework. Int. J. Public. Health, 55(2) 123–132 (10 pages).

    Article  Google Scholar 

  • Etemad-Shahidi, A.; Zoghi, M. J.; Saeedi, M., (2010). An alternative data driven approach for prediction of thermal discharge initial dilution using tee diffusers. Int. J. Environ. Sci. Tech., 7(1), 29–36 (8 pages).

    Google Scholar 

  • Foruzanmehr, A.; Nicol, F., (2008). Towards new approaches for integrating vernacular passive-cooling system into modern building in warm-dry climates of Iran. Proceedings of conference: Air Conditioning and the low Carbon Cooling Challenge. Cumberland Lodge, Windsor, UK, 27–29 July. London.

  • Fransson, N.; Yästfjäll, D.; Skoog, J., (2007). In search of the comfortable indoor environment: A comparison of the utility of objective and subjective indicators of indoor comfort. Build. Environ., 42(5), 1886–1890 (5 pages).

    Article  Google Scholar 

  • Gulyas, A.; Unger, J.; Matzarakis, A., (2006). Assessment of the microclimatic and human comfort conditions in acomplex urban environment: Modelling and measurements. Build. Environ., 41(12), 1713–1722 (10 pages).

    Article  Google Scholar 

  • Humphreys, M. A.; Nicol, J. F., (2000). Outdoor temperature and indoor thermal comfort: Raising the precision of the relationship for the 1998 ASHRAE database of field studies. ASHRAE Transact., 206(2), 485–492 (8 pages).

    Google Scholar 

  • Humphreys, M. A., (1978). Outdoor temperature and comfort indoors. Build. Res. Pract., 6(2), 92–105 (14 pages).

    Google Scholar 

  • ISO 10551. (1995). Ergonomics of the thermal environment-Assessment of the influence of the thermal environment using subjective judgement scales.

  • Kalkstein, L. S.; Greene, J. S., (1997). An evaluation of climate/ mortality relationships in large U.S. cities and the possible impacts of a climate change. Environ. Health Perspect., 105(1), 84–93 (10 pages).

    Article  CAS  Google Scholar 

  • Kont, A.; Jaagus, J.; Aunap, R., (2003). Climate change scenario and the effect of sea-level rise for Estonia. Glob. Plan. Chang., 36(1–2), 1–15 (15 pages).

    Article  Google Scholar 

  • Langford, I. H.; Bentham, G., (1995). The potential effects of climate change on winter mortality in England and Wales. Int. J. Bioclimat., 38(3), 141–147 (7 pages).

    CAS  Google Scholar 

  • Lin, Z.; Deng, S., (2006). A study on the thermal comfort in sleeping environments in the subtropics-Developing a thermal comfort model for sleeping environments. Build. Environ., 43(1), 70–81 (12 pages).

    Article  Google Scholar 

  • Martens, W. J., (1998). Climate change, thermal stress, and mortality change. Soc. Sci. Med., 46(3), 331–344 (14 pages).

    Article  CAS  Google Scholar 

  • Matzarakis, A.; Mayer, H., (1997). Heat stress in Greece. Int J. Biometeorol., 41(1), 34–39 (6 pages).

    Article  CAS  Google Scholar 

  • McCartney, K. J.; Nicol, J. F., (2002). Developing an adaptive control algorithm for Europe. Energy Build., 34(6), 623–635 (12 pages).

    Article  Google Scholar 

  • Miller, H., (2008). The attributes of thermal comfort. (Solution Essay) Ergonomic criteria for the design of “breathable” work chairs. http://www.hermanmiller.com/MarketFacingTech/hmc/solution_essays/assets/se_Attributes_of_Thermal_Comfort.pdf.

  • Nicol, J. F., (2004). Adaptive thermal comfort standards in the hot-humid tropics. Energy Build., 36(7), 628–637 (10 pages).

    Article  Google Scholar 

  • Nicol, J. F.; Humphreys, M., (2007). Maximum temperatures in European office buildings to avoid heat discomfort. Sol. Energy, 81(3), 295–304 (10 pages).

    Article  Google Scholar 

  • Nicol, J. F.; Humphreys, M. A., (2002). Adaptive thermal comfort and sustainable thermal standards for buildings. Energ. Buildings., 34(4), 563–572 (10 pages).

    Article  Google Scholar 

  • Nicol, J. F.; Humphreys, M. A., (1973). hermal comfort as part of a self regulating system, in: Proceedings of the CIB Symposium on thermal comfort. Building Research Establishment, Watford, UK.

    Google Scholar 

  • Olalekan, F.; Osanyintola, O. F.; Simonson, C. J., (2006). Moisture buffering capacity on hygroscopic building materials: Experimental facilities and energy impact. Energ. Buildings., 38(10), 1270–1282 (13 pages).

    Article  Google Scholar 

  • Orosa, J. A., (2009). Research on the origins of thermal comfort. Eur. J. Sci. Res., 34(4), 561–567 (7 pages).

    Google Scholar 

  • Orosa, J. A.; Oliveira, A., (2009). Energy saving with passive climate control methods in Spanish office buildings. Energ. Buildings., 41(8), 823–828 (6 pages).

    Article  Google Scholar 

  • Pandey, M., (2005). Global warming and climate change. Publisher Dominant Publishers and Distributors.

  • Panjeshahi, M. H.; Ataei, A., (2008). Application of an environmentally optimum cooling water system design in water and energy conservation. Int. J. Environ. Sci. Tech., 5(2), 251–262 (12 pages).

    Article  Google Scholar 

  • Piotrowicz, K., (2009). The occurrence of unfavorable thermal conditions on human health in central europe and potential climate change impacts: An example from cracow, Poland. Environ. Manage., 44(4), 766–775 (10 pages).

    Article  Google Scholar 

  • Praveena, S. M.; Aris, A. Z., (2010). Groundwater resources assessment using numerical model: A case study in low-lying coastal area. Int. J. Environ. Sci. Tech., 7(1), 135–146 (12 pages).

    CAS  Google Scholar 

  • Prek, M., (2006). Thermodynamical analysis of human thermal comfort. Energy, 31(5), 732–743 (12 pages).

    Article  Google Scholar 

  • Radhi, H., (2009). Evaluating the potential impact of global warming on the UAE residential buildings — A contribution to reduce the CO2 emissions., Build. Environ. 44(12), 2451–2462 (12 pages).

    Article  Google Scholar 

  • Roshan, G. R.; Rousta, I.; Ramesh, M., (2009). Studying the effects of urban sprawl of metropolis on tourism-climate index oscillation: A case study of Tehran city. J. Geograph. Region. Plan., 2(12), 310–321 (12 pages).

    Google Scholar 

  • Sakoi, T.; Tsuzuki, K.; Kato, S. H.; Ooka, R.; Song, D.; Zhu, S. H., (2007). Thermal comfort, skin temperature distribution and sensible heat loss distribution in the sitting posture in various asymmetric radiant fields., Build. Environ., 42(12), 3984–3999 (15 pages).

    Article  Google Scholar 

  • Spagnolo, J.; Dear, R., (2003). A field study of thermal comfort in outdoor and semi-outdoor environments in subtropical Sydney Australia. Build. Environ., 138(5), 721–738 (18 pages).

    Article  Google Scholar 

  • Tian, Z.; Love, J., (2008). A field study of occupant thermal comfort and thermal environments with radiant slab cooling. Build. Environ., 43(10), 1658–1670 (12 pages).

    Article  Google Scholar 

  • Willem, P. N.; Christopher, J., (2009). Implications of fossil fuel constraints on economic growth and global warming Energ. Policy, 37(1), 166–180 (15 pages).

    Google Scholar 

  • Zaman, A. U., (2010). Comparative study of municipal solid waste treatment technologies using life cycle assessment method. Int. J. Environ. Sci. Tech., 7(2), 225–234 (10 pages).

    CAS  Google Scholar 

  • Zeiler, W.; Boxem, G., (2009). Effects on thermal activated building systems in schools on thermal comfort in winter. Build. Environ., 44 (11), 2308–2317 (10 pages).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gh. R. Roshan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roshan, G.R., Ranjbar, F. & Orosa, J.A. Simulation of global warming effect on outdoor thermal comfort conditions. Int. J. Environ. Sci. Technol. 7, 571–580 (2010). https://doi.org/10.1007/BF03326166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326166

Keywords

Navigation