Potential of natural bed soil in adsorption of heavy metals in industrial waste landfill

  • M. Esmaeili BidhendiEmail author
  • A. R. Karbassi
  • A. Baghvand
  • M. Saeedi
  • A. H. Pejman


Development of higher welfare could not be realized unless by energy consumption and other natural resources. Growth of industrial complexes has shown an unprecedented trend during recent years. Many of these towns have no treatment systems for the industrial wastes leachates. Besides, the chemical composition of wastes in such complexes varies considerably due to the different kinds of industries. It is endeavored in the present work to study the natural potential of soil to treat leachate of such industrial wastes. For this purpose, the Aliabad industrial complex in Tehran — Garmsar road was selected as the study area. The potential of adsorption of elements such as nickel, copper, cadmium, zinc, chromium, lead and manganese was investigated. The results indicated that the soil potential to adsorb heavy metals (except for manganese) was very high (95 %) in the adsorption of heavy metals (except for manganese). Further, chemical partitioning studies revealed that heavy metals are associated with various soil phases such as loosely bonded ions, sulfide and organics to various extents. Among the mentioned soil phases, one can deduce that major portion of metal contaminants is absorbed as loosely bonded ions. Organic bond and sulfide bond are in the 2nd and 3rd positions of metal contaminants adsorption, respectively. The results of the present study apparently showed that soil column had ample capacity to adsorb metal contaminants. Thus, determination of soil potential in adsorption of heavy metals during site selection is as important criteria.


Heavy metal Industry Leachate Waste landfill 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Khashman, O. A., (2004). Heavy metal distribution in dust, street dust and soil from the work place in Karak Industrial Estate, Jordan Atmos. Environ., 38(39), 6803–6812 (10 pages).CrossRefGoogle Scholar
  2. Allen, A. R., (2001). Containment landfills: The myth of sustainability. J. Eng. Geol., 60(1–4), 3–19 (17 pages).CrossRefGoogle Scholar
  3. Aucott, M., ( 2006 ). The fate of heavy metals in landfills: A Review. Prepared for the industrial ecology, pollution prevention and the NY-NJ harbor. Project of the New York Academy of Sciences.Google Scholar
  4. Bagchi, A., (1989). Design, construction and monitoring of sanitary landfills. John Wiley and Sons, New York.Google Scholar
  5. Banat, K. M.; Howari, F. M.; Al-Hamad, A. A., (2005). Heavy metals in urban soils of central jordan: Should we worry about their environmental risks? Environ. Res., 97(3), 258–273 (16 pages).CrossRefGoogle Scholar
  6. Barrett, A.; Lawlor, J., (1995). The economics of waste management in ireland. Economic and Social Research Institute, Dublin.Google Scholar
  7. Bulut, Y.; Baysal, Z., (2006). Removal of Pb (II) from wastewater using wheat bran. J. Environ. Manage., 78(2), 107–113 (7 pages).CrossRefGoogle Scholar
  8. Charlesworth, S.; Everett, M.; McCarthy, R.; Ordonez, A.; De Miguel, E., (2003). A comparative study of heavy metals concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and coventry, west midlands, UK. Environ. Int., 29(5), 563–573 (11 pages).CrossRefGoogle Scholar
  9. Chen, T. B.; Zheng, Y. M.; Lei, M.; Huang, Z. C.; Wu, H. T.; Chen, H.; Fan, K. K.; Yu, K.; Wu, X.; Tian, Q. Z., (2005). Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere, 60(4), 542–551 (10 pages).CrossRefGoogle Scholar
  10. Cheng, Z.; Zheng, Y.; Mortlock, R.; Van Geen, A., (2004). Rapid multi-element analysis of groundwater by high-resolution inductively coupled plasma mass spectrometry. Anal. Bioanal. Chem., 379 (3), 512–518 (7 pages).Google Scholar
  11. Christensen, T. H.; Kjeldsen, P.; Bjerg, P. L.; Jensen, D. L.; Christensen, J. B.; Baun, A.; Albrechtsen, H. J.; Heron, G., (2001). Biogeochemistry of landfill leachate plumes. Appl. Geochem., 16(7–8), 659–718 (59 pages).CrossRefGoogle Scholar
  12. EPA, (1992a). Integrated risk information system (IRIS). National centre for environmental assessment, Office of research and development, United State Environmental Protection Agency, Washington D.C.Google Scholar
  13. EPA, (1992b). Flame atomic absorption spectrophotometry. Environmental Protection Agency. Revision 2.Google Scholar
  14. EPA, (2007). Acid digestion of aqueous samples and extracts for total metals for analysis by FLAA or ICP Spectroscopy. Environmental Protection Agency. Method # 3010A, Revision 1.Google Scholar
  15. Fang, H. Y., (1995). Bacteria and tree root attack on liners, in: Sarby, R. W., (Ed.), Composition of leachate from waste disposal sites. Waste disposal by landfill: Green ’93 - Proceedings of a symposium on Geotechnics Related to the European Environment, Bolton, UK, Balkema, Rotterdam, 215–221 (7 pages).Google Scholar
  16. Fatta, D.; Papadopoulos, A.; Loizidou, M., (1999). A Study on the landfill leachate and it’s impact on the ground water quality of the greater area. Environ. Geochem. Hlth., 21(2), 175–190 (16 pages).CrossRefGoogle Scholar
  17. Freeze, R. A.; Cherry, J. A., (1979). Ground Water. Prentice - Hall Inc., 604.Google Scholar
  18. Futta, D.; Yoscos, C.; Haralambous, K. J.; Loizidou, M., (1997). An assessment of the effect of landfill leachate on groundwater quality. 6th. Int. landfill symposium. S. Margherita di Pule, Gagliari, Italy. 181–187 (7 pages).Google Scholar
  19. Gharaibeh, S. H.; Masad, A., (1989). Die problomatite der ahallbeseitingung in Jordan. Fallstudie fur enstasicklungs lander. Wasser und Boden, 10, 620–622 (3 pages).Google Scholar
  20. Karbassi, A. R.; Monavari, S. M.; Bidhendi, G. R. N.; Nouri, J.; Nematpour, K., (2008). Metal pollution assessment of sediment and water in the Shur River. Environ. Monitor. Assess., 147(1–3), 107–116 (10 pages).CrossRefGoogle Scholar
  21. Langston, W., (1990). Toxic effects of metals and the incidence of metal pollution in marine coastal ecosystem, in: Furness, R. W.; Rainbow P. S., (Eds.), Heavy metals in the marine environment, Boca Raton. CRC Press Inc. 101–122 (22 pages).Google Scholar
  22. Lee, G. F.; Jones L. A., (1993). Groundwater pollution by municipal landfills: Leachate composition, detection and water quality significance, Proc. Sardinia ’93 IV International Landfill Symposium, Sardinia, Italy, 1093–1103 (11 pages).Google Scholar
  23. Lee, G. F.; Jones, R. A.; Ray, C., (1986). Sanitary landfill leachate recycle. Biocycle., 27(1), 36–38 (3 pages).Google Scholar
  24. Lewis, R. J., (1991). Hazardous chemicals desk reference, 2nd. Eds., Van Nostrand Reinhold, New York, USA, 1–71 (71 pages).Google Scholar
  25. Longe, E. O.; Enekwechi, L. O., (2007). Investigation on potential groundwater impacts and influence of local hydrology on natural attenuation of leachate at a municipal landfill. Int. J. Environ. Sci. Tech., 4(1), 133–140 (8 pages).CrossRefGoogle Scholar
  26. Low, K. S.; Lee, G. K.; Liew, S. C., (2000). Sorption of cadmium and lead from aqueous solutions by spent grain. Proc. Biochem., 36(1), 59–64 (6 pages).CrossRefGoogle Scholar
  27. Mahvi, A. H., (2008). Application of agricultural fibers in pollution removal from aqueous solution. Int. J. Environ. Sci. Tech., 5(2), 275–285 (11 pages).CrossRefGoogle Scholar
  28. Malakootian, M.; Nouri, J.; Hossaini, H., (2009). Removal of heavy metals from paint industries wastewater using Leca as an available adsorbent. Int. J. Environ. Sci. Tech., 6(2), 183–190 (8 pages).Google Scholar
  29. Nameni, M.; Alavi Moghadam, M. R.; Arami, M., (2008). Adsorption of hexavalent chromium from aqueoussolutions by wheat bran. Int. J. Environ. Sci. Tech., 5(2), 161–168 (8 pages).CrossRefGoogle Scholar
  30. Nouri, J.; Mahvi, A. H.; Jahed, G. R.; Babaei, A. A., (2008). Regional distribution pattern of groundwater heavy metals resulting from agricultural activities. Environ. Geol. 55(6), 1337–1343 (7 pages).CrossRefGoogle Scholar
  31. Okafor, E. Ch.; Opuene, K., (2007). Preliminary assessment of trace metals and polycyclic aromatic hydrocarbons in the sediments. Int. J. Environ. Sci. Tech., 4(2), 233–240 (8 pages).Google Scholar
  32. Panjeshahi, M. H.; Ataei, A., (2008). Application of an environmentally optimum cooling water system design in water and energy conservation. Int. J. Environ. Sci. Tech., 5(2), 251–262 (12 pages).CrossRefGoogle Scholar
  33. Pekey, H., (2006). The distribution and sources of heavy metals in Izmit Bay surface sediments affected by a polluted stream. Mar. Pollut. Bull., 52(10), 1197–1208 (12 pages).CrossRefGoogle Scholar
  34. Qasim, S. R.; Chiang, W., (1994). Sanitary landfill leachate. CRC Press.Google Scholar
  35. Suthar, S.; Singh, S., (2008). Vermicomposting of domestic waste by using two epigeic earthworms (Perionyx excavatus and perionyx sansibaricus). Int. J. Environ. Sci. Tech., 5(1), 99–106 (8 pages).CrossRefGoogle Scholar
  36. Vasanthi, P.; Kaliappan, S.; Srinivasaraghavan, R., (2008). Impact of poor solid waste management on ground water. Environ. Monit. Assess., 143(1–3), 227–238 (11 pages).CrossRefGoogle Scholar
  37. Zheng, C.; Bennett, G. D.; Andrews, C. B., (1991). Analysis of groundwater remedial alternatives of a superfund site. Groundwater, 29(6), 838–848 (11 pages).CrossRefGoogle Scholar

Copyright information

© Islamic Azad University 2010

Authors and Affiliations

  • M. Esmaeili Bidhendi
    • 1
    Email author
  • A. R. Karbassi
    • 1
  • A. Baghvand
    • 1
  • M. Saeedi
    • 2
  • A. H. Pejman
    • 1
  1. 1.Graduate Faculty of EnvironmentUniversity of TehranTehranIran
  2. 2.Environmental Research Laboratory, School of Civil EngineeringIran University of Science and TechnologyTehranIran

Personalised recommendations