Skip to main content
Log in

Correlation between the chemical structure of biodiesel and its physical properties

  • Review Paper
  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

Biodiesel is a renewable, biodegradable, environmentally benign, energy efficient, substitution fuel which can fulfill energy security needs without sacrificing engine’s operational performance. Thus it provides a feasible solution to the twin crises of fossil fuel depletion and environmental degradation. The properties of the various individual fatty esters that comprise biodiesel determine the overall properties of the biodiesel fuel. In turn, the properties of the various fatty esters are determined by the structural features of the fatty acid and the alcohol moieties that comprise a fatty ester. Better understanding of the structure-physical property relationships in fatty acid esters is of particular importance when choosing vegetable oils that will give the desired biodiesel quality. By having accurate knowledge of the influence of the molecular structure on the properties determined, the composition of the oils and the alcohol used can both be selected to give the optimal performance. In this paper the relationship between the chemical structure and physical properties of vegetable oil esters is reviewed and engineering fatty acid profiles to optimize biodiesel fuel characteristics is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achten, W. M. J.; Verchot, L.; Franken, Y. J.; Mathijs, E.; Singh, V. P.; Aerts, R.; Muys, B., (2008). Jatropha biodiesel production and use. Biomass Bioenerg., 32 (12), 1063–1084(22 pages).

    Article  CAS  Google Scholar 

  • Allen, C. A. W.; Watts, K. C.; Ackman, R. G.; Pegg, M. J., (1999). Predicting the viscosity of biodiesel fuels from their fatty acid Ester composition. Fuel, 78 (11), 1319–1326 (8 pages).

    Article  CAS  Google Scholar 

  • Alptekin, E.; Canakci, M., (2008). Determination of the density and the viscosities of biodiesel-diesel fuel blends. Renew. Energ., 33 (12), 2623–2630 (8 pages).

    Article  CAS  Google Scholar 

  • Anastopoulos, G.; Lois, E.; Karonis, D.; Zanikos, F.; Kalligeros, S., (2001). A preliminary evaluation of esters of Monocarboxylic fatty acid on the lubrication properties of diesel Fuel. Ind. Eng. Chem. Res., 40 (1), 452–456 (5 pages).

    Article  CAS  Google Scholar 

  • Bangboye, A. I.; Hansen, A. C., (2008). Prediction of cetane number of biodiesel fuel from the fatty acid methyl ester (FAME) composition. Int. Agrophysics, 22 (1), 21–29 (9 pages).

    Google Scholar 

  • Barnard, T. M.; Leadbeater, N. E.; Boucher, M. B.; Stencel, L. M.; Wilhite, B. A., (2007). Continuous-flow preparation of biodiesel using microwave heating. Energ. Fuel., 21 (3), 1777–1781 (5 pages).

    Article  CAS  Google Scholar 

  • Berchmans, H. J.; Hirata, S., (2008). Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresource Tech., 99 (6), 1716–1721 (6 pages).

    CAS  Google Scholar 

  • Bondaruk, M.; Johnson, S.; Degafu, A.; Boora, P.; Bilodeau, P.; Morris, J.; Wiehler, W.; Foroud, N.; Weselake, R.; Shah, S., (2007). Expression of a cDNA encoding palmitoyl-acyl carrier protein desaturase from cat’s claw (Doxantha unguis- cati L. ) in Arabidopsis thaliana and Brassica napus leads to accumulation of unusual unsaturated fatty acids and increased stearic acid content in the seed oil. Plant Breeding, 126 (2), 186–194 (9 pages).

    CAS  Google Scholar 

  • Bondioli, P.; Gasparoli, A.; Bella, L. D.; Tagliabue, S., (2002). Evaluation of biodiesel storage stability using reference methods. Eur. J. Lipid Sci. Tech., 104 (12), 777–784 (8 pages).

    Article  CAS  Google Scholar 

  • Bondioli, P.; Gasparoli, A.; Lanzani, A.; Fedeli, E.; Veronese, S.; Sala, M., (1995). Storage stability of biodiesel. J. Am. Oil Chem. Soc., 72 (6), 699–702 (4 pages).

    Article  CAS  Google Scholar 

  • Bouaid, A.; Martinez, M.; Aracil, J., (2007). Long storage stability of biodiesel from vegetable and used frying oils. Fuel, 86 (16), 2596–2602 (7 pages).

    Article  CAS  Google Scholar 

  • Boyak, I. H.; Tekin, A.; Cizmec, M.; Javidipour, I., (2002). Viscosity estimation of vegetable oils based on their fatty acid composition. J. Food Lipids, 9 (3), 175–183 (9 pages).

    Article  Google Scholar 

  • Buhr, T.; Sato, S.; Ebrahim, F.; Xing, A. Q.; Zhou, Y; Mathiesen, M.; Schweiger, B.; Kinney, A.; Staswick, P.; Clemente, T., (2002). Ribozyme termination of RNA transcripts down- regulate seed fatty acid genes in transgenic soybean. Plant J., 30 (2), 155–163 (9 pages).

    Article  CAS  Google Scholar 

  • Cahoon, E. B.; Hall, S. E.; Ripp, K. G.; Ganzke, T. S.; Hitz, W. D.; Coughlan, S. J., (2003). Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat. Biotech., 21 (9), 1082–1087 (6 pages).

    Article  CAS  Google Scholar 

  • Cahoon, E. B.; Shah, S.; Shanklin, J.; Browse, J., (1998). A determinant of substrate specificity predicted from the acyl- acyl carrier protein desaturase of developing cat’s claw seed. Plant Physiol., 117 (2), 593–598 (6 pages).

    Article  CAS  Google Scholar 

  • Cahoon, E. B.; Shanklin, J., (2000). Substrate-dependent mutant complementation to select fatty acid desaturase variants for metabolic engineering of plant seed oils. Proceedings of the National Academy of Science USA (PNAS), 97 (22), 12350–12355.

    Article  CAS  Google Scholar 

  • Canakci, M., (2007). The potential of restaurant waste lipids as biodiesel feedstocks. Bioresour. Tech., 98 (1), 183–190 (8 pages).

    Article  CAS  Google Scholar 

  • Canakci, M.; Monyem, A.; van Gerpen, J. H., (1999). Accelerated oxidation processes in biodiesel. Am. Soc. Agr. Eng., 42 (6), 1565–1572 (8 pages).

    CAS  Google Scholar 

  • Canakci, M.; van Gerpen, J. H., (2001). The performance and emissions of a diesel engine fueled with biodiesel from yellow grease and soybean oil. American Society of Agricultural Engineers, ASAE Annual International Meeting, Sacramento, California, USA, July 30-August 1, 2001, Paper N. 016050.

  • Cardone, M.; Prati, M. V.; Rocco, V.; Seggiani, M.; Senatore, A.; Vitolo, S., (2002). Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: Engine performance and regulated and unregulated exhaust emissions. Environ. Sci. Tech., 36 (21), 4656–4662(7 pages).

    Article  CAS  Google Scholar 

  • Carvalho, C. R.; Clarindo, W. R.; Praca, M. M.; Araujo, F. S.; Carels, N. (2008). Genome size, base composition and karyotype of Jatropha curcas L., an important biofuel plant. Plant Sci., 174 (6), 613–617 (5 pages).

    CAS  Google Scholar 

  • Chhetri, A. B.; Watts, K. C.; Islam, M. R., (2008). Waste cooking oil as an alternate feedstock for biodiesel production. Energies, 1, 3–18 (16 pages).

    Article  CAS  Google Scholar 

  • Cvengros, J. (1998). Acidity and corrosiveness of methyl esters of vegetable oils. Eur. J. Lipid Sci. Tech., 100 (2), 41–44 (4 pages).

    CAS  Google Scholar 

  • Cvengros, J.; Paligova J.; Cvengrosova, Z., (2006). Properties of alkyl esters base on castor oil. Eur. J. Lipid Sci. Tech., 108 (8), 629–635 (7 pages).

    Article  CAS  Google Scholar 

  • Da Silva Ramos, L. C.; Tango, J. S.; Savi, A.; Leal, N. R., (1984). Variability for oil and fatty acid composition in castorbean varieties. J. Am. Oil Chem. Soc., 61 (12), 1841–1843 (3 pages).

    Article  Google Scholar 

  • De Filippis, P.; Giavarini, C.; Scarsella, M.; Sorrentino, M., (1995). Transesterification processes for vegetable oils: A simple control method of methyl ester content. J. Am. Oil Chem. Soc., 72 (11), 1399–1404 (6 pages).

    Article  Google Scholar 

  • Demirbas, A., (1997). Calculation of higher heating values of biomass fuels. Fuel, 76 (5), 431–434 (4 pages).

    Article  CAS  Google Scholar 

  • Demirbas, A., (2007). Progress and recent trends in biofuels. Prog. Energ. Combust., 33 (1), 1–18 (18 pages).

    Article  CAS  Google Scholar 

  • Demirbas, A., (2008). Relationships derived from physical properties of vegetable oil and biodiesel fuels. Fuel, 87 (8–9), 1743–1748 (6 pages).

    Article  CAS  Google Scholar 

  • Dorado, M. P.; Ballesteros, E.; Lopez, F. J.; Mittelbach M., (2004). Optimization of alkali-catalyzed transesterifation of brassica carinata oil for biodiesel production. Energ. Fuel., 18 (1), 77–83 (7 pages).

    Article  CAS  Google Scholar 

  • Drown, D. C.; Harper, K.; Frame, E., (2001). Screening vegetable oil alcohol esters as fuel lubricity enhancers. J. Am. Oil Chem. Soc., 78 (6), 579–584 (6 pages).

    Article  CAS  Google Scholar 

  • Du Plessis, L. M.; de Villiers, J. B. M.; van der Walt, W. H., (1985). Stability studies on methyl and ethyl fatty acid esters of sunflower seed oil. J. Am. Oil Chem. Soc., 62 (4), 748–752 (5 pages).

    Article  Google Scholar 

  • Dunn, R. O., (2002). Effect of oxidation under accelerated conditions on fuel properties of methyl soyate (biodiesel). J. Am. Oil Chem. Soc., 79 (9), 915–920 (6 pages).

    Article  CAS  Google Scholar 

  • Dunn, R. O., (2005). Cold Weather Properties and Performance of Biodiesel. In: Knothe, G.; van Gerpen, J.; Krahl, J., The Biodiesel Handbook, Chapter 6.3. AOCS Press, Champaign, IL, USA.

  • Dunn, R. O., (2008). Antioxidants for improving storage stability of biodiesel. Biofuels, Bioproducts and Biorefining, 2 (4), 304–318 (15 pages).0

    Article  CAS  Google Scholar 

  • Dunn, R. O.; Knothe, G., (2001). Alternative diesel fuels from vegetable oils and animal fats. J. Oleo Sci., 50 (5), 415–426 (12 pages).

    Article  CAS  Google Scholar 

  • Durrett, T. P.; Benning, C.; Ohlrogge, J., (2008). Plant triacylglycerols as feedstocks for the production of biofuels. Plant J., 54 (4), 593–607 (15 pages).

    Article  CAS  Google Scholar 

  • El Diwani, G.; El Rafie, Sh., (2008). Modification of thermal and oxidative properties of biodiesel produced from vegetable oils. Int. J. Environ. Sci. Tech., 5 (3), 391–400 (10 pages).

    Article  Google Scholar 

  • Encinar, J. M.; Gonzalez, J. F.; Rodriguez-Reinares, A., (2005). Biodiesel from used frying oil. Variables affecting the yields nd characteristics of the biodiesel. Ind. Eng. Chem. Res., 44 (15), 5491–5499 (9 pages).

    Article  CAS  Google Scholar 

  • Fernando, S.; Hanna, M.; Adhikari, S., (2007). Lubricity characteristics of selected vegetable oils, animal fats, and their derivatives. Appl. Eng. Agric., 23 (1), 5–11 (7 pages).

    Google Scholar 

  • Ferrari, R. A.; Oliveira, V. S.; Scabio, A., (2005). Oxidative stability of biodiesel from soybean oil fatty acid ethyl esters. Sci. Agr. (Piracicaba, Braz.), 62 (3), 291–295 (5 pages).

    CAS  Google Scholar 

  • Freedman, B.; Butterfield, R. O.; Pryde, E. H., (1986). Transesterification kinetics of soybean oil. J. Am. Oil Chem. Soc., 63 (10), 1375–1380 (6 pages).

    Article  CAS  Google Scholar 

  • Geller, D. P.; Goodrum, J. W., (2000). Rheology of vegetable oil analogs and triglycerides. J. Am. Oil Chem. Soc., 77 (2), 111–114 (4 pages).

    Article  CAS  Google Scholar 

  • Geller, D. P.; Goodrum, J. W., (2004). Effects of specific fatty acid methyl esters on diesel fuel lubricity. Fuel, 83 (17–18), 2351–2356 (6 pages).

    Article  CAS  Google Scholar 

  • Goodrum, J. W.; Geller, D. P., (2005). Influence of fatty acid methyl esters from hydroxylated vegetable oils on diesel fuel lubricity. Bioresour. Tech., 96 (7), 851–855 (5 pages).

    Article  CAS  Google Scholar 

  • Graboski, M. S.; McCormik, R. L., (1998). Combustion of fat and vegetable oil derived fuels in diesel engines. Prog. Energ. Combust., 24 (2), 125–164 (40 pages).

    Article  CAS  Google Scholar 

  • Gunstone, F. D., (2002). Vegetable oils in food technology: Composition, Properties and Uses. Blackwell Publishing Ltd, UK.

  • Haas, M. J.; Foglia, T. A., (2005). Alternate feedstocks and technologies for biodiesel production. In: Knothe, G.; van Gerpen, J.; Krahl, J., The Biodiesel Handbook, Chapter 4.2. AOCS Press, Champaign, IL, USA.

  • Halvorsen, J. D.; Mammel Jr., W. C.; Clements, L. D., (1993). Density estimation for fatty acids and vegetable oils based on their fatty acid composition. J. Am. Oil Chem. Soc., 70 (9), 875–880 (6 pages).

    Article  CAS  Google Scholar 

  • Harrington, K. J. (1986). Chemical and physical properties of vegetable oil esters and their effect on diesel fuel performance. Biomass, 9 (1), 1–17 (17 pages).

    Article  CAS  Google Scholar 

  • Hayes, D. G.; Kleiman, R.; Phillips, B. S., (1995). The triglyceride composition, structure, and presence of estolides in the oils of Lesquerella and related species. J. Am. Oil Chem. Soc., 72 (5), 559–569 (11 pages).

    Article  CAS  Google Scholar 

  • Hess, M. A.; Haas, M. J.; Foglia, T. A., (2007). Attempts to reduce NOx exhaust emissions by using reformulated biodiesel. Fuel Process. Tech., 88 (7), 693–699 (7 pages).

    Article  CAS  Google Scholar 

  • Hu, J.; Zexue Du, Z.; Li, C.; Min, E. (2005). Study on the lubrication properties of biodiesel as fuel lubricity enhancers. Fuel, 84 (12–13), 1601–1606 (6 pages).

    CAS  Google Scholar 

  • Joshi, R. M.; Pegg, M. J., (2007). Flow properties of biodiesel fuel blends at low temperatures. Fuel, 86 (1–2), 143–151 (9 pages).

    Article  CAS  Google Scholar 

  • Kamal-Eldin, A., (2006). Effect of fatty acids and tocopherols on the oxidative stability of vegetable oils. Eur. J. Lipid Sci. Tech., 108 (12), 1051–1061 (11 pages).

    Article  CAS  Google Scholar 

  • Karmee, S. K.; Chandna, D.; Ravi, R.; Chadha, A., (2006). Kinetics of base-catalyzed transesterification of triglycerides from pongamia oil. J. Am. Oil Chem. Soc., 83 (10), 873–877 (5 pages).

    Article  CAS  Google Scholar 

  • Karunanandaa, B.; Qi, Q.; Hao, M.; Baszis, S. R.; Jensen, P. K.; Wong, Y. H.; Jiang, J.; Venkatramesh, M.; Gruys, K. J.; Moshiri, F.; Post-Beittenmiller, D.; Weiss, J. D.; Valentin, H. E., (2005). Metabolically engineered oilseed crops with enhanced seed tocopherol. Metab. Eng., 7 (5–6), 384–400 (17 pages).

    Article  CAS  Google Scholar 

  • Kenesey, E.; Ecker, A., (2003). Oxygen bond to improve the lubricity of fuel. Tribologie und Schmierungstechnik, 50 (2), 21–26 (6 pages).

    CAS  Google Scholar 

  • Knothe, G., (2000). monitoring a progressing transesterification reaction by fiber-optic near infrared spectroscopy with correlation to 1H nuclear magnetic resonance spectroscopy. J. Am. Oil Chem. Soc., 77 (5), 489–493 (5 pages).

    Article  CAS  Google Scholar 

  • Knothe, G., (2002). Structure indices in FA chemistry. how relevant is the iodine value?. J. Am. Oil Chem. Soc., 79 (9), 847–854 (8 pages).

    Article  CAS  Google Scholar 

  • Knothe, G., (2005a). Introduction. In: Knothe, G.; van Gerpen, J.; Krahl, J. The Biodiesel Handbook, Chapter 1. AOCS Press, Champaign, IL, USA.

  • Knothe, G., (2005b). Viscosity of biodiesel. In: Knothe, G.; van Gerpen, J.; Krahl, J. The Biodiesel Handbook, Chapter 6.2. AOCS Press, Champaign, IL, USA.

  • Knothe, G., (2005c). Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process. Tech., 86 (10), 1059–1070 (12 pages).

    Google Scholar 

  • Knothe, G., (2005d). Cetane numbers-heat of combustion— why vegetable oils and their derivatives are suitable as a diesel fuel. In: Knothe, G.; van Gerpen, J.; Krahl, J. The Biodiesel Handbook, Chapter 6.1. AOCS Press, Champaign, IL, USA.

  • Knothe, G., (2006). Analyzing biodiesel: Standards and other methods J. Am. Oil Chem. Soc., 83 (10), 823–833 (11 pages).

    Article  CAS  Google Scholar 

  • Knothe, G., (2007). Some aspects of biodiesel oxidative stability. Fuel Process. Tech., 88 (7), 669–677 (9 pages).

    Article  CAS  Google Scholar 

  • Knothe, G.; Bagby, M. O.; Ryan, T. W., (1998). Precombustion of fatty acids and esters of biodiesel. A possible explanation for differing cetane numbers. J. Am. Oil Chem. Soc., 75 (8), 1007–1013 (7 pages).

    CAS  Google Scholar 

  • Knothe, G.; Matheaus, A. C.; Ryan, T. W., (2003). Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester. Fuel, 82 (8), 971–975 (5 pages).

    Article  CAS  Google Scholar 

  • Knothe, G.; Steidley, K. R., (2005a). Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel, 84 (9), 1059–1065 (7 pages).

    CAS  Google Scholar 

  • Knothe, G.; Steidley, K. R., (2005b). Lubricity of components of biodiesel and petrodiesel. The origin of biodiesel lubricity. Energ. Fuel., 19 (3), 1192–1200 (9 pages).

    Article  CAS  Google Scholar 

  • Knothe, G.; Steidley, K. R., (2007). Kinematic viscosity of biodiesel components (fatty acid alkyl esters) and related compounds at low temperatures. Fuel, 86 (16), 2560–2567 (8 pages).

    Article  CAS  Google Scholar 

  • Knothe, G.; van Gerpen, J.; Krahl, J., (2005). Oxidative stability of biodiesel. The Biodiesel Handbook, Chapter 6.4. AOCS Press, Champaign, IL, USA.

  • Krisnangkura, K.; Yimsuwan, T.; Pairintra, R., (2006). An empirical approach in predicting biodiesel viscosity at various temperatures. Fuel, 85 (1), 107–113 (7 pages).

    Article  CAS  Google Scholar 

  • Lam, M. K.; Tan, K. T.; Lee, K. T.; Mohamed, A. R., (2009). Malaysian palm oil: Surviving the food versus fuel debate for a sustainable future. Renew. Sust. Energ. Rev., 13 (6–7), 1456-1464 (9 pages).

    Google Scholar 

  • Leadbeater, N. E.; Stencel, L. M., (2006). Fast, easy preparation of biodiesel using microwave heating. Energ. Fuel., 20 (5), 2281–2283 (3 pages).

    Article  CAS  Google Scholar 

  • Lee, I.; Johnson, L. A.; Hammond, E. G., (1995). Use of branched-chain esters to reduce the crystallization temperature of biodiesel. J. Am. Oil Chem. Soc., 72 (10), 1155–1160 (6 pages).

    Article  CAS  Google Scholar 

  • Leung, D. Y. C.; Koo, B. C. P.; Guo, Y., (2006). Degradation of biodiesel under different storage conditions. Bioresour. Tech., 97 (2), 250–256 (7 pages).

    Article  CAS  Google Scholar 

  • Ma, F.; Hanna, M. A., (1999). Biodiesel production: A review. Bioresour. Tech., 70 (1), 1 -15 (15 pages).

  • Mahajan, S.; Konar, S. K.; Boocock, D. G. B., (2006). Determining the acid number of biodiesel. J. Am. Oil Chem. Soc., 83 (6), 567–570 (4 pages).

    Article  CAS  Google Scholar 

  • McCormick, R. L.; Alleman, T. L., (2005). Effect of biodiesel fuel on pollutant emissions from diesel engines. In: Knothe, G.; van Gerpen, J.; Krahl, J. The Biodiesel Handbook, Chapter 7.1. AOCS Press, Champaign, IL, USA.

    Google Scholar 

  • Meneghetti, S. M. P.; Meneghetti, M. R.; Wolf, C. R.; Silva, E. C.; Lima, G. E. S.; Silva, L. L.; Serra, T. M.; Cauduro, F.; de Oliveira, L. G., (2006a). Biodiesel from castor oil: a comparison of ethanolysis versus methanolysis. Energ. Fuel., 20 (5), 2262–2265 (4 pages).

    Article  Google Scholar 

  • Meneghetti, S. M. P.; Meneghetti, M. R.; Wolf, C. R.; Silva, E. C.; Lima, G. E. S.; Coimbra, M.; Soletti, J. I.; Carvalho, H. V., (2006b). Ethanolysis of castor and cottonseed oil: A systematic study using classical catalysts. J. Am. Oil Chem. Soc., 83 (9), 819–822 (4 pages).

    Article  CAS  Google Scholar 

  • Monyem, A.; van Gerpen, J. H., (2001). The effect of biodiesel oxidation on engine performance and emissions. Biomass Bioenerg., 20 (4), 317–325 (9 pages).

    Article  CAS  Google Scholar 

  • Naik, M.; Meher, L. C.; Naik, S. N.; Das, L. M., (2008). Production of biodiesel from high free fatty acid Karanja (Pongamia pinnata) oil. Biomass Bioenerg., 32 (4), 354–357 (4 pages).

    Article  CAS  Google Scholar 

  • Nascimento, R. S. V.; Soares, V. L. P.; Albinante, S.; Barreto, L. R., (2005). Effect of ester-additives on the crystallization temperature of methyl hexadecanoate. J. Therm. Anal. Calorim., 79 (2), 249–254 (6 pages).

    Article  CAS  Google Scholar 

  • Noor Azian, M.; Mustafa Kamal, A. A.; Panau, F.; Ten, W. K., (2001). Viscosity estimation of triacylglycerols and of Some vegetable oils, based on their triacylglycerol composition. J. Am. Oil Chem. Soc., 78 (10), 1001–1005 (5 pages).

    Article  Google Scholar 

  • Rabelo, J.; Batista, E.; Cavaleri, F. W.; Meirelles, A. J. A., (2000). Viscosity prediction for fatty systems. J. Am. Oil Chem. Soc., 77 (12), 1255–1262 (8 pages).

    Article  CAS  Google Scholar 

  • Ramadhas, A. S.; Jayaraj, S.; Muraleedharan, C.; Padmakumari, K., (2006). Artificial neural networks used for the prediction of the cetane number of biodiesel. Renew. Energ., 31 (15), 2524–2533 (10 pages).

    Article  CAS  Google Scholar 

  • Refaat, A. A.; Attia, N. K.; Sibak, H. A.; El Sheltawy, S. T.; El Diwani, G. I., (2008a). Production optimization and quality assessment of biodiesel from waste vegetable oil. Int. J. Environ. Sci. Tech., 5 (1), 75–82 (8 pages).

    Google Scholar 

  • Refaat, A. A.; El Sheltawy, S. T.; Sadek, K. U., (2008b). Optimum reaction time, performance and exhaust emissions of biodiesel produced by microwave irradiation. Int. J. Environ. Sci. Tech., 5 (3), 315–322 (8 pages).

    Article  CAS  Google Scholar 

  • Rodenbush, C. M.; Hsieh, F. H.; Viswanath, D. S., (1999). Density and viscosity of vegetable oils. J. Am. Oil Chem. Soc., 76 (12), 1415–1419 (5 pages).

    Article  CAS  Google Scholar 

  • Rodrigues, J. A.; Cardoso, F. P.; Lachter, E. R.; Estevao, L. R. M.; Lima, E.; Nascimento, R. S. V., (2006). Correlating chemical structure and physical properties of vegetable oil esters. J. Am. Oil Chem. Soc., 83 (4), 353–357 (5 pages).

    Article  CAS  Google Scholar 

  • Sarin, R.; Arora, A. K.; Ranjan, R.; Gupta, A. A.; Malhotra, R. K., (2007). Biodiesel lubricity: Correlation study with residual acidity. Lubr. Sci., 19 (2), 151–157 (7 pages).

    Article  CAS  Google Scholar 

  • Sarin, R.; Kumar, R.; Srivastav, B.; Puri, S. K.; Tuli, D. K.; Malhotra, R. K.; Kumar, A., (2009). Biodiesel surrogates: Achieving performance demands. Bioresour. Tech., 100 (12),3022-3028 (7 pages).

    Google Scholar 

  • Scholz, V.; da Silva, J. N., (2008). Prospects and risks of the use of castor oil as a fuel. Biomass Bioenerg., 32 (2), 95–100 (6 pages).

    Article  CAS  Google Scholar 

  • Schumacher, L., (2005). Biodiesel lubricity. In: Knothe, G.; van Gerpen, J.; Krahl, J. The Biodiesel Handbook, Chapter 6.5. AOCS Press, Champaign, IL, USA.

  • Scott, P. T.; Pregelj, L.; Chen, N.; Hadler, J. S.; Djordjevic, M. A.; Gresshoff, P. M., (2008). Pongamia pinnata: An untapped resource for the biofuels industry of the future. Bioenerg. Res., 1 (1), 2–11 (10 pages).

    Article  Google Scholar 

  • Scrimgeour, C., (2005). Chemistry of fatty acids. In: Bailey’sindustrial oil and fat products, 6 (Ed.) Six Volume Set, Vol. 1: Edible oil and fat products, Chapter 1. John Wiley and Sons, Inc., New York.

  • Singh, A.; He, B.; Thompson, J.; Van Gerpen, J., (2006). Process optimization of biodiesel production using different alkaline catalysts. Applied Engineering in Agriculture, 22 (4), 597–600 (4 pages).

    Google Scholar 

  • Srinivasan, S., (2009). The food v fuel debate: A nuanced view of incentive structures. Renew. Energ., 34 (4), 950–954 (5 pages).

    Article  Google Scholar 

  • Srivastava, A.; Prasad, R., (2001). Rheological behaviour of fatty acid methyl esters. Indian J. Chem. Tech., 8 (6), 473–481 (9 pages).

    CAS  Google Scholar 

  • Sujatha, M.; Reddy, T. P.; Mahasi, M. J., (2008). Role of biotechnological interventions in the improvement of castor (Ricinus communis L. ) and Jatropha curcas L. Biotech. Adv., 26 (5), 424–435 (12 pages).

    Article  CAS  Google Scholar 

  • Tang, H.; Wang, A.; Salley, S. O.; Simon, K. Y., (2008). The effect of natural and synthetic antioxidants on the oxidative stability of biodiesel. J. Am. Oil Chem. Soc., 85 (4), 373–382 (10 pages).

    Article  CAS  Google Scholar 

  • Tangsathitkulchai, C.; Sittichaitaweekul, Y.; Tangsathitkulchai, M., (2004). Temperature effect on the viscosities of palm oil and coconut oil blended with diesel oil. J. Am. Oil Chem. Soc., 81 (4), 401–405 (5 pages).

    Article  CAS  Google Scholar 

  • Tat, M. E.; van Gerpen, J. H., (1999). The kinematic viscosity of biodiesel and its blends with diesel fuel. J. Am. Oil Chem. Soc., 76 (12), 1511–1513 (3 pages).

    Article  CAS  Google Scholar 

  • Tat, M. E.; van Gerpen, J. H., (2000). The specific gravity of biodiesel and its blends with diesel fuel. J. Am. Oil Chem. Soc., 77 (2), 115–119 (5 pages).

    Article  CAS  Google Scholar 

  • Tat, M. E.; van Gerpen, J. H.; Wang, P. S.; Clemente, T. E., (2007). Exhaust emissions from an engine fueled with biodiesel from high-oleic soybeans. J. Am. Oil Chem. Soc.,84 (9), 865–869 (5 pages).

    Article  CAS  Google Scholar 

  • Tate, R. E.; Watts, K. C.; Allen, C. A. W.; Wilkie, K. I., (2006). The viscosities of three biodiesel fuels at temperatures up to 300 °C. Fuel, 85 (7–8), 1010–1015 (6 pages).

    Article  CAS  Google Scholar 

  • Thompson, J. C., Peterson, C. L.; Reece, D. L.; Beck, S. M.; (1998). Two-year storage study with methyl and ethyl esters of rapeseed. Am. Soc. Agric. Eng., 41 (4), 931–939 (9 pages).

    CAS  Google Scholar 

  • van Gerpen, J. H., (1996). Cetane number testing of biodiesel. Proceedings of the 3rd Liquid Fuel Conference: Liquid Fuel and Industrial Products from Renewable Resources, American Society of Agricultural Engineers (ASAE), September 15–17, 1996, Nashville, TN, USA, 197-206.

  • van Gerpen, J. H.; Knothe, G., (2005). Basics of the Transesterification Reaction. In: Knothe, G.; van Gerpen, J.; Krahl, J. The Biodiesel Handbook, Chapter 4.1. AOCS Press, Champaign, IL, USA.

  • van Gerpen, J. H.; Peterson, C. L.; Goering, C. E., (2007). Biodiesel: An alternative fuel for compression ignition engines. Proceedings of the Agricultural Equipment Technology Conference, Louisville, Kentucky, USA, 11–14 February 2007, ASAE Publication No. 913C0107.

  • van Gerpen, J. H.; Seref, S.; Tat, M. E., (1999). Evaluation of the lubricity of soybean oil-based additives in diesel fuel.American Society of Agricultural Engineers, ASAE Annual International Meeting, Torontoo, Ontario, Canada, July 18–July 21, 1999, Paper No.: 966134.

  • Vicente, G; Martinez, M.; Aracil, J., (2005). Optimization of brassica carinata oil methanolysis for biodiesel production. J. Am. Oil Chem. Soc., 82 (12), 899–904 (6 pages).

    Article  CAS  Google Scholar 

  • Wain, K. S.; Perez, J. M., (2002). Oxidation of biodiesel fuel for improved lubricity. ASME 2002-ICE-447, ICE, 38, 27–34 (8 pages).

    CAS  Google Scholar 

  • Wang, T.; Briggs, J. L., (2002). Rheological and thermal properties of soybean oils with modified fatty acid compositions. J. Am. Oil Chem. Soc., 79 (8), 831–836(6 pages).

    Article  CAS  Google Scholar 

  • WCO, (2007). The harmonized commodity description and coding system (HS). World Customs Organization, Brussels, Belgium.

  • Yanishlieva, N. V.; Kamal-Eldin, A.; Marinova, E. M.; Toneva, A. G., (2002). Kinetics of antioxidant action of α- and γ- toco-pherols in sunflower and soybean triacylglycerols. Eur. J. Lipid Sci. Tech., 104 (5), 262–270 (9 pages).

    Article  CAS  Google Scholar 

  • Yuan, W.; Hansen, A. C.; Zhang, Q.; Tan, Z., (2005). Temperature-dependent kinematic viscosity of selected biodiesel fuels and blends with diesel fuel. J. Am. Oil Chem. Soc., 82 (3), 195–199 (5 pages).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Refaat B.Sc. (Hons), M.Sc..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Refaat, A.A. Correlation between the chemical structure of biodiesel and its physical properties. Int. J. Environ. Sci. Technol. 6, 677–694 (2009). https://doi.org/10.1007/BF03326109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03326109

Keywords

Navigation