Skip to main content
Log in

Modeling study of the effects of the coagulation kernel with van der Waals forces and turbulence on the particle size distribution

  • Published:
International Journal of Environmental Science & Technology Aims and scope Submit manuscript

Abstract

In this study, variations in the size distributions due to different assumptions for the coagulation kernel are investigated. In order to evaluate how the coagulation kernel influences the form of the particle size distribution and to describe the process of the Brownian coagulation, the Brownian coagulation kernel, including the van der Waals forces, is compared with the most frequently used coagulation coefficients. Retardation should be considered for interparticle interactions for particles larger than 1μm radius. However, for particle sizes larger than 0.1 μm, the Brownian kernel is not dominant, so the retardation effect can be ignored. The inclusion of the van der Waals forces in the Brownian coagulation kernel caused a faster coagulation process in the small particle size range. Taking account of the turbulent coagulation kernel, the turbulent coagulation kernel becomes more important when the turbulent intensity is higher. The turbulent coagulation kernel affects the large particle size range and ignoring the turbulent coagulation kernel will lead to overestimation of particle number concentration in model simulation. The results of this study indicate that the inclusion of van der Waals forces or the turbulent coagulation kernel in the total coagulation kernel impacts on the modeled particle size distributions and total particle number concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alam, M. K., (1987). The effect of van der Waals and viscous forces on aerosol coagulation. Aerosol Sci.Tech., 6, 41–52.

    Article  CAS  Google Scholar 

  • Allen, M. D.; Raabe, O. G., (1985). Slip correction measurement of spherical solid aerosol particles in an improved Millikan apparatus. Aerosol Sci. Tech., 4, 269–286.

    Article  CAS  Google Scholar 

  • Chan, T. W.; Mozurkewich, M., (2001). Measurement of the coagulation rate constant for sulfuric acid particles as a function of particle size using random differential mobility analysis. J. Aerosol Sci., 32, 321–339.

    Article  CAS  Google Scholar 

  • Cheng, L.; Davis, A.; Peake, E.; Rogers, D., (1987). The use of aircraft measurements to determine transport, dispersion and transformation rates of pollutants emitted from oil sands extraction plants in Alberta, Provincial Health Council of Alberta.

  • Cho, S. H., (2005). Detailed microphysical modeling study of particle size distributions in an industrial plume, Ph.D thesis, York University, Toronto, Ontario, Canada.

    Google Scholar 

  • Fuchs, N. A., (1964). The mechanics of aerosols. Oxford: Pergamon Press.

    Google Scholar 

  • Fuchs, N. A.; Sutugin, A. G., (1971). Topics in current aerosol research (Part 2), (Eds) Hidy, G. M. and Brock, J. R., Pergamon, New York.

  • Jacobson, M. Z., (1999). Fundamentals of atmospheric modeling, Cambridge University Press.

  • Jacobson, M. Z.; Turco, R., (1994). Modeling coagulation among particles of different composition and size. Atmos. Environ., 28, 1327–1338.

    Article  CAS  Google Scholar 

  • Jaenicke, R., (1993). Tropospheric aerosols, aerosol cloud climate interactions. P. V. Hobbs, Academic Press.

  • Kim, Y. P.; Seinfeld, J. H., (1990). Numerical solution of the multicomponent aerosol general dynamic equation. In Proceeding 3rd. Int. Aerosol Conference, Science, Industry, Health and Environment, Oxford: Pergamon Press.

    Google Scholar 

  • Kruis, F. E.; Kusters, K. A., (1997). The coagulation rate of particles in turbulent flow. Chem. Eng. Commun., 158, 201–230.

    Article  CAS  Google Scholar 

  • Ludlum, F. H., (1980). Clouds and storms. The Pennsylvania State University Press, University Park.

    Google Scholar 

  • Muller, H., (1928). Zur allgemeinen theorie der raschem koagulation. Die koaguatlion von stabchen-und blattchen-kolloiden; die theorie beliebig polydisperser system und der stromungskoagulation. Kolloidebeihefte, 27, 223–50.

    CAS  Google Scholar 

  • Pruppacher, H. R.; Klett, J. D., (1997). Microphysics of clouds and precipitation, 2nd rev. and Enlarged edition with an introduction to cloud chemistry and cloud electricity, Kluwer academic publishers, Dordrecht.

    Google Scholar 

  • Sceats, M. G., (1989). Brownian coagulation in aerosols — the role of long range forces. J. Colloid Interf. Sci., 129, 105–112.

    Article  CAS  Google Scholar 

  • Schmdit-Ott, A.; Burtscher, H., (1982). The effect of van der Waals forces on aerosol coagulation. J. Colloid Interf. Sci., 89, 353.

    Article  Google Scholar 

  • Toon, O. B.; Turco, R. P.; Westphal, D.; Malone, R.; Liu, M., (1988). A multi-dimensional model for aerosols: Description computational analogs. J. Atmos. Sci., 45, 2123–43.

    Article  Google Scholar 

  • Turco, R. P.; Hamill, P.; Toon, O. B.; Whitten, R. C.; Kiang, C. S. J., (1979). The NASA — Ames research center stratospheric aerosol model: physical processes and computational analogs. NASA Technical Publication.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Cho M.Sc., Ph.D..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, S., Michelangeli, D.V. Modeling study of the effects of the coagulation kernel with van der Waals forces and turbulence on the particle size distribution. Int. J. Environ. Sci. Technol. 5, 1–10 (2008). https://doi.org/10.1007/BF03325991

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03325991

Keywords

Navigation