Skip to main content
Log in

Proteolytic enzyme activity as a result of aging

  • Original Articles
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background and aims: The extracellular matrix (ECM) undergoes constant dynamic changes; proteolytic enzymes, particularly the serine proteases plasmin, trypsin and elastase, catalyze critical functions in these processes. Notably, ECM degradation disorders have been reported in various morbid conditions, including cardiac infarction, atheromatosis, and neoplastic diseases, indicating a physiological requirement for proper ECM maintenance. Here we define the role of proteolytic enzymes in the development of aging by assessing changes in proteolytic enzyme activity in serum during aging in rats. Methods: The activities of trypsin, elastase and plasmin in rat serum were determined by the fluorometric method using AMC-labeled substrates in 34 Wistar rats divided into four age groups: 3 month-olds (n=8), 9 month-olds (n=8), 15 month-olds (n=8) and 24 month-olds (n=10). Results: Analysis of proteolytic enzyme activity in four age-dependent groups revealed that in comparison to their 3, 9, and 24 month-old counterparts, the 15 month-old rats exhibited a statistically significant increase in average elastase activity. In accordance with previous studies, a statistically significant increase in trypsin levels was found in the 3 month-old rats, suggesting that trypsin activity decreases with age. Average plasma plasmin activity in the 24 month-old rats was, moreover, statistically significantly higher than that in the other three age groups. Conclusions: Analysis of combined proteolytic activity indicates that age-dependent patterning of blood serine protease enzyme activity may be related to age-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Jariel-Encontre I, Salvat C, Stefe AM, Pariat M, Acquaviva C. Complex mechanisms for c-fos and c-jun degradation. Mol Biol Rep 1997; 24: 51–6.

    Article  PubMed  CAS  Google Scholar 

  2. Baricos WH, Cortez SL, El-Dahr SS, Schnaper HW. ECM degradation by cultured human mesangial cells is mediated by a PA/plasmin/MMP-2 cascade. Kidney Int 1995; 47: 1039–47.

    Article  PubMed  CAS  Google Scholar 

  3. Stryer L, Augustyniak J, Michejdy J. Biochemistry. Warszawa PWN: 2003; 236: 265 274–5.

    Google Scholar 

  4. Elias E, Redshaw M, Wood T. Diagnostic importance of changes in circulating concentrations of immunoreactive trypsin. Lancet 1977; 2: 66–8.

    Article  PubMed  CAS  Google Scholar 

  5. Lake-Bakaar G, Rubio CE, McKavanagh S, Potter J, Summerfield JA. Metabolism of 125 [-labelled trypsin in man: evidence for recirculation. Gut 1980; 21: 580–6.

    Article  PubMed  CAS  Google Scholar 

  6. Naohiko K, Satoshi H, Yoji N, Keisuke M, Yoshiaki T, Satoshi M. Expression of trypsin by epithelial cells of various tissues, leukocytes, and neurons in human and mouse. Am J Pathol 1998; 153: 937–9.

    Article  Google Scholar 

  7. Mahmoud Z, Ladislas R, Dominique C, Pierre-Jean T, Latifa B, Pierre D. Serum elastase activity, serum elastase inhibitors, and occurrence of carotid atherosclerotic plaques. Circulation 2002; 105: 2638–45.

    Article  Google Scholar 

  8. Robert L, Jacobs MP, Frances C, Godeau G, Hornebeck W. Interaction between elastin and elastases and its role in the aging of the arterial wall, skin and other connective tissues. Mech Aging Dev 1984; 28: 155–66.

    Article  PubMed  CAS  Google Scholar 

  9. Robert L, Robert AM, Jacotot B. Elastin-elastase-atherosclerosis revisited. Atherosclerosis 1998; 140: 281–95.

    Article  PubMed  CAS  Google Scholar 

  10. Roszkowska-Jakimiec W, Worowska A, Gacko M, Maksimowicz T. Proteases of neutrophilic granulocytes. Post Hig Med Dosw 2002; 1: 73–92.

    Google Scholar 

  11. Beynon RJ, Bond JS. Proteolytic Enzymes (a practical approach). Oxford University Press, Oxford, 1989.

    Google Scholar 

  12. Jang X, Hand AR, Shujing S, Cone RE, O’Rourke J. Enhanced tissue plasminogen activator synthesis by the sympathetic neurons that innervate aging vessels. J Neurosci Res 2003; 71: 567–74.

    Article  Google Scholar 

  13. Makoto A, Yuichi H, Nobuaki O, Hiromi H, Taiichiro S, Toyohiko A. Plasminogen activator-plasmin system potentiates the proliferation of hepatocytes in primary culture. Thromb Res 2002; 107: 169–74.

    Article  Google Scholar 

  14. Wojtowicz-Praga SM, Dickson RB, Hawkins MJ. Matrix metalloproteinase inhibitors. Invest New Drugs 1997; 15: 61–7.

    Article  PubMed  CAS  Google Scholar 

  15. Woessner JF. Matrix metalloproteinase inhibition. Ann NY Acad Sci 1999; 878: 388–403.

    Article  PubMed  CAS  Google Scholar 

  16. Leppert D, Lindberg RLP, Kappos L. Matrix metalloproteinases: multifunctional effectors of inflammation in multiple sclerosis and bacterial meningitis. Brain Res Rev 2001; 36: 249–57.

    Article  PubMed  CAS  Google Scholar 

  17. Kerkela E, Saarialho-Kere U. Matrix metalloproteinases in tumor progression: focus on basal and squamous cell skin cancer. Exp Dermatol 2003; 1: 109–25.

    Article  Google Scholar 

  18. Jin-Moo L, Ke-Jie Y, Idar H, Shawei Ch. Matrix metalloproteinase-9 and spontaneous hemorrhage in an animal model of cerebral amyloid angiopathy. Ann Neurol 2003; 54: 379–82.

    Article  Google Scholar 

  19. Watanabe N, Ikeda U. Matrix metalloproteinases and atherosclerosis. Curr Atheroscler Rep 2004; 6: 112–20.

    Article  PubMed  Google Scholar 

  20. Zimmerman M, Ashe B, Yurewicz EC, Patel G. Sensitive assays for trypsin, elastase and chymotrypsin using new fluorogenic substrates. Anal Biochem 1977; 78: 47–51.

    Article  PubMed  CAS  Google Scholar 

  21. Cuervo AM, Dice JF. Lysosomes, a meeting point of proteins, chaperones and proteases. J Mol Med 1998; 76: 6–12.

    Article  PubMed  CAS  Google Scholar 

  22. Smith RE, Bissei ER, Mithell AR, Pearson KW. Direct photometric and fluorometric assay of proteinases using substrates containing 7-amido-4-trifluoromethylcoumarin. Thromb Res 1980; 17: 393–402.

    Article  PubMed  CAS  Google Scholar 

  23. Heidland A, Sebekova K, Paczek L, Teschner M, Dammrich J, Gaciong Z. Renal fibrosis: Role of impaired proteolysis and potential therapeutic strategies. Kidney Intern 1997; 52 (Suppl 6): S32–5.

    Google Scholar 

  24. Cushman M, Rozenn NL, Lewis HK, Bruce MP, Elizabeth MM. Fibrinolytic activation markers predict myocardial infarction in the elderly. The cardiovascular health study. Arterioscler Thromb Vasc Biol 1999; 19: 493–8.

    Article  CAS  Google Scholar 

  25. Munkvad S. Fibrinolysis in patients with acute ischaemic heart disease. Dan Med Bull 1993; 40: 383–408.

    PubMed  CAS  Google Scholar 

  26. Ranson M, Andronicos NM. Plasminogen binding and cancer: promises and pitfalls. Front Biosci 2003; 8: S294–304.

    Article  PubMed  CAS  Google Scholar 

  27. Zhu LX, Geng XP, Fan ST. Spontaneous rupture of hepatocellular carcinoma and vascular injury. Arch Surg 2001; 136: 682–7.

    Article  PubMed  CAS  Google Scholar 

  28. Balo J. Connective tissue changes in atherosclerosis. In Hall DA, ed. International review of connective tissue research, Vol I. New York: Academic Press, 1963: 241–306.

    Google Scholar 

  29. Bizbiz L, Alperovitch A, Robert L. Aging of the vascular wall: serum concentration of elastin peptides and elastase inhibitors in relation to cardiovascular risk factors. The EVA study. Atherosclerosis 1997; 131: 73–8.

    Article  CAS  Google Scholar 

  30. Oho S, Saley SJ, Koo EW. Increased elastin-degrading activity and neointimal formation in porcine aortic organ culture: reduction of both features with a serine proteinase inhibitor. Arterioscler Thromb Vasc Biol 1995; 15: 2200–6.

    Article  PubMed  CAS  Google Scholar 

  31. Ooyama T, Sakamato H. Elastase in the prevention of arterial aging and the treatment of atherosclerosis. Ciba Found Symp 1995; 192: 307–17.

    PubMed  CAS  Google Scholar 

  32. Gaciong Z, Paczek L, Bojakowski K, Socha K, Wisniewski M, Heidland A. Beneficial effect of proteases on allograft arteriosclerosis in a rat aortic model. Nephrol Dial Transplant 1996; 11: 987–9.

    Article  PubMed  CAS  Google Scholar 

  33. Religa P, Bojakowski K, Gaciong Z, Thyberg J, Hedin U. Arteriosclerosis in rat aortic allograft: dynamics of cell growth, apoptosis and expression of extracellular matrix proteins. Mol Cell Biochem 2003; 249: 75–83.

    Article  PubMed  CAS  Google Scholar 

  34. Lehmann PV. Immunomodulation by proteolytic enzymes. Nephrol Dial Transplant 1996; 11: 953–5.

    Article  Google Scholar 

  35. Zhang B, Ye S, Herrmann SM et al. Functional polymorphism in the regulatory region of gelatinase B gene in relation to severity of coronary atherosclerosis. Circulation 1999; 99: 1788–94.

    Article  PubMed  CAS  Google Scholar 

  36. Kluft C. The fibrynolytic system and thrombotic tendency. Pathophysiol Haemost Thromb 2004; 33: 425–9.

    Article  Google Scholar 

  37. Bouck N, Stellmach V, Hsu SC. How tumors become angiogenic. Adv Cancer Res 1996; 69: 135–74.

    Article  PubMed  CAS  Google Scholar 

  38. Chapman HA, Stone OL. Co-operation between plasmin and elastase in elastin degradation by intact murine macrophages. Biochem J 1984; 222: 721–8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leszek Paczek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paczek, L., Michalska, W. & Bartlomiejczyk, I. Proteolytic enzyme activity as a result of aging. Aging Clin Exp Res 21, 9–13 (2009). https://doi.org/10.1007/BF03324892

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03324892

Keywords

Navigation