Skip to main content
Log in

Interaction of age and specific saliva component output on caries

  • Original Articles
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Background and aims: The purpose of this study was to explore the relationship between individual salivary components, dental caries and age, utilizing the data from the Oral Health: San Antonio Longitudinal Study of Aging (OH:SALSA). Methods: The study population comprised a well-defined stratified sample of 811 dentate men and women. Subjects were divided into four age groups from 35 to 75+ years old. Unstimulated and stimulated submandibular/sublingual saliva flow rates, unstimulated and stimulated parotid saliva flow rates, total protein, 6 individual proteins and 4 inorganic constituents were measured. Specific salivary components were lactoferrin, secretory IgA, albumin, lysozyme, mucin, cystatin, K+, Ca+2, Na+ and Cl. Caries measurements were the DMFT Index for crowns and for roots, Tooth Health Index for crowns and roots, Tooth caries, Root caries and Tooth restoration. The data on saliva components were square root transformed for linearity prior to analysis. Analysis was carried out in two stages. Partial correlation was performed, in order to identify significant relationships between specific salivary components and caries measurements, controlling for age group. In the second stage, using caries measurement as the dependant variable, the effects of age, flow rate and specific salivary component output (product of flow rate and concentration) were examined. Results: Significant associations were found between caries, age and specific individual submandibular/sublingual salivary proteins (lactoferrin, albumin, lysozyme, mucin and cystatin) and specific inorganic constituents (K+, Ca+2, Na+ and Cl ). Conclusions: Changes in submandibular/sublingual salivary component output during aging are correlated with high caries prevalence. These changes in saliva components over age may represent caries risk indicators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sreebny LM. Xerostomia: diagnosis, management and clinical complications. In Edgar WM, ’Mullane DM, eds. Saliva and oral health, 2ed. London: British Dental Association, Thanet Press, Margate 1996: 43–66.

    Google Scholar 

  2. Leone CW, Oppenheim FG. Physical and chemical aspects of saliva as indicators of risk for dental caries in humans. J Dent Ed 2001; 65: 1054–62.

    CAS  Google Scholar 

  3. Services USDoHaH. Oral health in America: A report of the surgeon general. 2000.

  4. CDC. Total tooth loss among persons aged > or = 65 years-selected states, 1995–1997. MMWR 1999; 48: 206–10.

    Google Scholar 

  5. Tomar SL, Asma S. Smoking-attributable periodontitis in the United States: findings from NHANES III. National Health and Nutrition Examination Survey. J Periodontol 2000; 71: 743–51.

    CAS  Google Scholar 

  6. Dodds MW, Johnson DA, Yeh CK. Health benefits of saliva: a review. J Dent 2005; 33: 223–33.

    Article  PubMed  Google Scholar 

  7. Edgar WM. The role of saliva in the control of pH changes in human dental plaque. Caries Res 1976; 10: 241–54.

    Article  PubMed  CAS  Google Scholar 

  8. Valentine AD, Anderson RJ, Bradnock G. Salivary pH and dental caries. Br Dent J 1978; 144: 105–7.

    Article  PubMed  CAS  Google Scholar 

  9. Rose PT, Gregory RL, Gfell LE, Hughes CV. IgA antibodies to Streptococcus mutans in caries-resistant and -susceptible children. Pediatric Dent 1994; 16: 272–5.

    CAS  Google Scholar 

  10. Tenovuo J, Jentsch H, Soukka T, Karhuvaara L. Antimicrobial factors of saliva in relation to dental caries and salivary levels of mutans streptococci. J de biologie buccale 1992; 20: 85–90.

    CAS  Google Scholar 

  11. Dodds MW, Yeh CK, Johnson DA. Salivary alterations in type 2 (non-insulin-dependent) diabetes mellitus and hypertension. Commun Dentist Oral Epidemiol 2000; 28: 373–81.

    Article  CAS  Google Scholar 

  12. Yeh CK, Dodds MW, Zuo P, Johnson DA. A population-based study of salivary lysozyme concentrations and candidal counts. Arch Oral Biol 1997; 42: 25–31.

    Article  PubMed  CAS  Google Scholar 

  13. Yeh CK, Johnson DA, Dodds MW. Impact of aging on human salivary gland function: a community-based study. Aging Clin Exp Res 1998; 10: 421–8.

    CAS  Google Scholar 

  14. Nagler RM. Salivary glands and the aging process: mechanistic aspects, health-status and medicinal-efficacy monitoring. Biogerontol 2004; 5: 223–33.

    Article  CAS  Google Scholar 

  15. Espino DV, Lichtenstein MJ, Palmer RF, Hazuda HP. Ethnic differences in mini-mental state examination (MMSE) scores: where you live makes a difference. J Am Geriatr Soc 2001; 49: 538–48.

    Article  PubMed  CAS  Google Scholar 

  16. Narhi TO, Kurki N, Ainamo A. Saliva, salivary micro-organisms, and oral health in the home-dwelling old elderly—a five-year longitudinal study. J Dent Res 1999; 78: 1640–6.

    Article  PubMed  CAS  Google Scholar 

  17. Johnson DA, Yeh CK, Dodds MW. Effect of donor age on the concentrations of histatins in human parotid and submandibular/sublingual saliva. Arch Oral Biol 2000; 45: 731–40.

    Article  PubMed  CAS  Google Scholar 

  18. Arneberg P. Quantitative determination of protein in saliva. A comparison of analytical methods. Scand J Dent Res 1971; 79: 60–4.

    CAS  Google Scholar 

  19. Denny PC, Denny PA, Klauser DK, Hong SH, Navazesh M, Tabak LA. Age-related changes in mucins from human whole saliva. J Dental Res 1991; 70: 1320–7.

    Article  CAS  Google Scholar 

  20. Zacharius RM, Zell TE, Morrison JH, Woodlock JJ. Glycoprotein staining following electrophoresis on acrylamide gels. Anal Biochem 1969; 30: 148–52.

    Article  PubMed  CAS  Google Scholar 

  21. Oral health of United States adults. Bethesda: National Institutes of Health publication #87-2868. In: Services USDoHaH, ed. 1987: 161–4.

  22. Dodds MW, Johnson DA, Mobley CC, Hattaway KM. Parotid saliva protein profiles in caries-free and caries-active adults. Oral Surg Oral Med Oral Pathol Oral Radiol Endodon 1997; 83: 244–51.

    Article  CAS  Google Scholar 

  23. Marcenes WS, Sheiham A. Composite indicators of dental health: functioning teeth and the number of sound-equivalent teeth (T-Health). Comm Dent Oral Epidemiol 1993; 21: 374–8.

    Article  CAS  Google Scholar 

  24. Sheiham A, Maizels J, Maizels A. New composite indicators of dental health. Comm Dent Health 1987; 4: 407–14.

    CAS  Google Scholar 

  25. Yeh CK, Johnson DA, Dodds MW, Sakai S, Rugh JD, Hatch JP. Association of salivary flow rates with maximal bite force. J Dent Res 2000; 79: 1560–5.

    Article  PubMed  CAS  Google Scholar 

  26. Schneyer LH. Source of resting total mixed saliva of man. J Applied Physiol 1956; 9: 79–81.

    CAS  Google Scholar 

  27. Schneyer LH, Levin LK. Rate of secretion by exogenously stimulated salivary gland pairs of man. J Applied Physiol 1955; 7: 609–13.

    CAS  Google Scholar 

  28. Schneyer LH, Levin LK. Rate of secretion by individual salivary gland pairs of man under conditions of reduced exogenous stimulation. J Applied Physiol 1955; 7: 508–12.

    CAS  Google Scholar 

  29. Ship JA, Pillemer SR, Baum BJ. Xerostomia and the geriatric patient. J Am Geriatr Soc 2002; 50: 535–43.

    Article  PubMed  Google Scholar 

  30. Bardow A, Hofer E, Nyvad B et al. Effect of saliva composition on experimental root caries. Caries Res 2005; 39: 71–7.

    Article  PubMed  CAS  Google Scholar 

  31. Lussi A, Jaeggi T. Chemical factors. Monogr Oral Sci 2006; 20: 77–87.

    Article  PubMed  Google Scholar 

  32. Van Nieuw Amerongen A, Bolscher JG, Veerman EC. Salivary proteins: protective and diagnostic value in cariology? Caries Res 2004; 38: 247–53.

    Article  PubMed  Google Scholar 

  33. Vissink A, Spijkervet FK, van Nieuw Amerongen A. [Changes in secretion and composition of saliva with agingl;. Nederlands tijdschrift voor tandheelkunde 1997; 104: 186–9.

    PubMed  CAS  Google Scholar 

  34. Azevedo LR, Damante JH, Lara VS, Lauris JR. Age-related changes in human sublingual glands: a post mortem study. Arch Oral Biol 2005; 50: 565–74.

    Article  PubMed  Google Scholar 

  35. Pedersen W, Schubert M, Izutsu K, Mersai T, Truelove E. Age-dependent decreases in human submandibular gland flow rates as measured under resting and post-stimulation conditions. J Dent Res 1985; 64: 822–5.

    Article  PubMed  CAS  Google Scholar 

  36. Roberts SB, Rosenberg I. Nutrition and aging: changes in the regulation of energy metabolism with aging. Physiol Rev 2006; 86: 651–67.

    Article  PubMed  CAS  Google Scholar 

  37. Cowman RA, Frisch M, Lasseter CJ, Scarpace PJ. Effects of beta-adrenergic antagonists on salivary secretory function in individuals of different ages. J Gerontol 1994; 49: B208–14.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mungia, R., Cano, S.M., Johnson, D.A. et al. Interaction of age and specific saliva component output on caries. Aging Clin Exp Res 20, 503–508 (2008). https://doi.org/10.1007/BF03324876

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03324876

Keywords

Navigation