Skip to main content
Log in

Robot-aided intensive training in post-stroke recovery

  • Short Communication
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

The successful motor rehabilitation of stroke patients requires an intensive and task-specific therapy approach. The plasticity of the adult human brain provides opportunities to enhance traditional rehabilitation programs for these individuals. Intensive robot-aided sensorimotor training may have a positive effect on reducing impairment and disability and increasing reorganization of the adult brain. This approach may therefore efficaciously complement standard post-stroke multidisciplinary programs as shown by recent experimental trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. The Italian guidelines for stroke prevention and treatment (SPREAD). Milano: Ed. Hyperphar Group, 2003.

  2. Butefish C, Hummelsheim H, Denzler P, Mauritz H. Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. J Neurol Sci 1995; 130: 59–68.

    Article  Google Scholar 

  3. Taub E, Miller E, Novack A. Technique to improve chronic motor deficit after stroke. Arch Phys Med Rehabil 1993; 74: 347–54.

    PubMed  CAS  Google Scholar 

  4. Page SJ. Modified Constraint-Induced Therapy for hemiparesis: A review. Critical Review™ in Phys Rehabil Med 2004; 16: 31–8.

    Article  Google Scholar 

  5. Wolf SL, Binder-Macleod SA. Electromyographic biofeedback applications to the hemiplegic patient. Changes in upper extremity neuromuscular and functional status. Phys Ther 1983; 63: 1393–403.

    CAS  Google Scholar 

  6. Smith LE. Restoration of volitional limb movement of hemi- plegics following patterned functional electrical stimulations. Percept Mot Skills 1990; 71: 851–61.

    PubMed  CAS  Google Scholar 

  7. Kaas JH, Collins CE. Anatomic and functional reorganization of somatosensory cortex in mature primates after peripheral nerve and spinal cord injury. Adv Neurol 2003; 93: 87–95.

    PubMed  Google Scholar 

  8. Kolb B. Towards an ecology of cortical organization: experience and the changing brain. In Grafman J, Christen Y, eds. Neu- ronal plasticity: building a bridge from the laboratory to the clinic. Berlin: Springer-Verlag, 1999: 17–34.

    Chapter  Google Scholar 

  9. Hebb DO. The effects of early experience on problem solving at maturity. Am Psychol 1947; 2: 737–45.

    Google Scholar 

  10. Jenkins WM, Merzenich MM. Reorganization of neocortical representations after brain injury: a neurophysiological model of the bases of recovery from stroke. Progr Brain Res 1987; 71: 249–66.

    Article  CAS  Google Scholar 

  11. Nudo RJ, Wise BM, SiFuentes F, Milliken GW. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 1996; 272: 1791–4.

    Article  PubMed  CAS  Google Scholar 

  12. Oulad Ben Taib N, Manto M, Laute MA, Brotchi J. The cerebellum modulates rodent cortical motor output after ripetitive so- matosensory stimulation. Neurosurgery 2005; 56: 811–20.

    Article  PubMed  Google Scholar 

  13. van Mier H, Perlmutter JS, Petersen SE. Functional changes in brain activity during acquisition and practice of movement sequences. Motor Control 2004; 8: 500–20.

    PubMed  Google Scholar 

  14. van Mier H, Petersen SE. Role of the cerebellum in motor cognition. Ann NY Acad Sci 2002; 978: 334–53.

    Article  PubMed  Google Scholar 

  15. Molinari M, Leggio MG, Solida A, et al. Cerebellum and procedural learning. Evidence from focal cerebellar lesions. Brain 1997; 120: 1753–62.

    Google Scholar 

  16. Lalonde R, Botez MI. The cerebellum and learning processes in animals. Brain 1990; 15: 325–32.

    CAS  Google Scholar 

  17. Johansson B. Brain plasticity and stroke rehabilitation. The Willis Lecture. Stroke 2000; 31: 223–30.

    Article  CAS  Google Scholar 

  18. Liepert J, Bauder H, Miltner WHR, Taub E, Weiller C. Treatment- induced cortical reorganization after stroke in humans. Stroke 2000; 31: 1210–6.

    Article  PubMed  CAS  Google Scholar 

  19. Belin P, Van Eeckhout P, Zilbovicius M, et al. Recovery from non- fluent aphasia after melodic intonation therapy: a PET study. Neurology 1996; 47: 1504–11.

    Article  PubMed  CAS  Google Scholar 

  20. Kwakkel G, Wagenaar RC, Twisk JWR, Lankhorst GJ, Koetsier JC. Intensity of leg and arm training after primary middle cerebral artery stroke: a randomized trial. Lancet 1999; 354: 191–6.

    Article  PubMed  CAS  Google Scholar 

  21. Sunderland A, Fletcher D, Bradley L, Tinson D, Hewer RL, Wade DT. Enhanced physical therapy for arm function after stroke: a one year follow up study. J Neurol Neurosurg Psychiatry 1994; 57: 856–8.

    Article  PubMed  CAS  Google Scholar 

  22. Dobkin BH. Strategies for stroke rehabilitation. Lancet Neurol 2004; 3: 528–36.

    Article  PubMed  Google Scholar 

  23. Volpe BT, Krebs HI, Hogan N. Is robot-aided sensorimotor training in stroke rehabilitation a realistic option? Curr Opin Neurol 2001; 14: 745–52.

    Article  PubMed  CAS  Google Scholar 

  24. Volpe BT, Krebs HI, Hogan N, Edelsteinn L, Diels CM, Aisen ML. Robot training enhanced motor outcome in patients with stroke maintained over 3 years. Neurology 1999; 10: 1874–6.

    Article  Google Scholar 

  25. Krebs HI, Volpe BT, Aisen ML, Hogan N. Increasing productivity and quality of care: Robot-aided neuro-rehabilitation. J Rehabil Res Dev 2000; 37: 639–52.

    PubMed  CAS  Google Scholar 

  26. Rohrer B, Fasoli S, Krebs HI, et al. Movement smoothness changes during stroke recovery. J Neurosci 2002; 15: 8297–304.

    Google Scholar 

  27. Volpe BT, Krebs HI, Hogan N, Edelstein L, Diels C, Aisen M. A novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation. Neurology 2000; 54: 1938–44.

    Article  PubMed  CAS  Google Scholar 

  28. Volpe BT, Ferraro M, Krebs HI, Hogan N. Robotics in the rehabilitation treatment of patients with stroke. Curr Atheroscler Rep 2002; 4: 270–6.

    Article  PubMed  Google Scholar 

  29. Ferraro M, Palazzolo JJ, Krol J, Krebs HI, Hogan N, Volpe BT. Robot-aided sensorimotor arm training improves outcome in patients with chronic stroke. Neurology 2003; 61: 1604–7.

    Article  PubMed  CAS  Google Scholar 

  30. Krebs HI, Volpe BT, Ferraro M, et al. Robot-aided neuroreha- bilitation: from evidence-based to science-based rehabilitation. Top Stroke Rehabil 2002; 8: 54–70.

    Article  PubMed  CAS  Google Scholar 

  31. Fasoli SE, Krebs HI, Stein J, Frontera WR, Hogan N. Effects of robotic therapy on motor impairment and recovery in chronic stroke. Arch Phys Med Rehabil 2003; 84: 477–82.

    Article  PubMed  Google Scholar 

  32. Volpe BT, Krebs HI, Hogan N. Robot-aided sensorimotor training in stroke rehabilitation. Adv Neurol 2003; 92: 429–33.

    PubMed  Google Scholar 

  33. Fasoli SE, Krebs HI, Hogan N. Robotic technology and stroke rehabilitation: translating research into practice. Top Stroke Rehabil 2004; 11: 11–9.

    Article  PubMed  Google Scholar 

  34. Fasoli SE, Krebs HI, Stein J, Frontera WR, Hughes R, Hogan N. Robotic therapy for chronic motor impairments after stroke: follow-up results. Arch Phys Med Rehabil 2004; 85: 1106–11.

    Article  PubMed  Google Scholar 

  35. Fasoli SE, Krebs HI, Ferraro M, Hogan N, Volpe BT. Does shorter rehabilitation limit potential recovery poststroke? Neurorehabil Neural Repair 2004; 18: 88–94.

    Article  PubMed  Google Scholar 

  36. Krebs HI, Ferraro M, Buerger SP, et al. Rehabilitation robotics: pilot trial of a spatial extension for MIT-Manus. J Neuroengi- neering Rehabil 2004; 1: 5–15.

    Article  Google Scholar 

  37. Hogan N, Krebs HI. Interactive robots for neuro-rehabilitation. Restor Neurol Neurosci 2004; 22: 349–58.

    PubMed  Google Scholar 

  38. Stein J, Krebs HI, Frontera WR, Fasoli SE, Hughes R, Hogan N. Comparison of two techniques of robot-aided upper limb exercise training after stroke. Am J Phys Med Rehabil 2004; 83: 720–8.

    Article  PubMed  Google Scholar 

  39. Volpe BT, Ferraro M, Lynch D, et al. Robotics and other devices in the treatment of patients recovering from stroke. Curr Atheroscler Rep 2004; 6: 314–9.

    Article  PubMed  Google Scholar 

  40. Krebs HI, Aisen ML, Volpe BT, Hogan N. Quantization of continuous arm movements in humans with brain injury. Proc Natl Acad Sci 1999; 96: 4645–9.

    Article  PubMed  CAS  Google Scholar 

  41. Burgar CG, Lum PS, Shor PC, Van der Loos M. Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience. J Rehabil Res Dev 2000; 37: 663–73.

    PubMed  CAS  Google Scholar 

  42. Lum PS, Burgar CG, Shor PC, Majmundar M, Van der Loos M. Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch Phys Med Rehabil 2002; 83: 952–9.

    Article  PubMed  Google Scholar 

  43. Lum PS, Burgar CG, Shor PC. Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Trans Neural Syst Rehabil Eng 2004; 12: 186–94.

    Article  PubMed  Google Scholar 

  44. Hesse S, Schulte-Tigges G, Konrad M, Bardeleben A, Werner C. Robot-assisted arm trainer for the passive and active practice of bilateral forearm and wrist movements in hemiparetic subjects. Arch Phys Med Rehabil 2003; 84: 915–20.

    Article  PubMed  Google Scholar 

  45. Hesse S, Schmidt H, Werner C, Bardeleben A. Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Curr Opin Neurol 2003; 16: 705–10.

    Article  PubMed  Google Scholar 

  46. Reinkensmeyer DJ, Schmit BD, Rymer WZ. Assessment of active and passive restraint during guided reaching after chronic brain injury. Ann Biomed Eng 1999; 27: 805–14.

    Article  PubMed  CAS  Google Scholar 

  47. Reinkensmeyer DJ, Kahn LE, Averbuch M, McKenna-Cole A, Smith BD, Rymer WZ. Understanding and treating arm movement impairment after chronic brain injury: progress with the ARM Guide. J Rehabil Res Dev 2000; 37: 653–62.

    PubMed  CAS  Google Scholar 

  48. Reinkensmeyer DJ, Emken JL, Cramer SC. Robotics, motor learning, and neurologic recovery. Annu Rev Biomed Eng 2004; 6: 497–525.

    Article  PubMed  CAS  Google Scholar 

  49. Fazekas G, Feher M, Arz G, Toth A. Robot-aided upper limb motion therapy of patients with spastic hemiparesis. Neurorehabil Neural Repair 2002; 16: 14 (Abstract).

    Google Scholar 

  50. Fazekas G, Feher M, Stefanik G, Boros Z, Toth A. Application of robots in the upper limb physiotherapy of patients with hemi- paresis. Orv Hetil 2004; 145: 1327–31.

    PubMed  Google Scholar 

  51. Coote S, Stokes E, Murphy B, Harwin W. The effect of gentle robot-mediated therapy on upper extremity dysfunction post stroke. Proceedings of the 8th International Conference on Rehabilitation Robotics, Seoul, Korea, 2003: 59–62.

  52. Harwin WS. Robots with a gentle touch: advances in assistive robotics and prosthetics. Technol Health Care 1999; 7: 411–7.

    PubMed  CAS  Google Scholar 

  53. Riener R, Nef T, Colombo G. Robot-aided neurorehabilitation of the upper extremities. Med Biol Eng Comput 2005; 43: 2–10.

    Article  PubMed  CAS  Google Scholar 

  54. Fanin C, Gallina P, Rossi A, Zanatta U, Masiero S. NeRebot: a wire-based robot for neurorehabilitation. Proceedings of the 8th International Conference on Rehabilitation Robotics, Seoul, Korea, 2003: 23–27.

  55. Masiero S, Celia A, Perticaro V, et al. Development of a robot for hemiplegic upper limb rehabilitation. Eura Medicophys 2004; 40 (Suppl.1 to No. 3): 645–8.

    Google Scholar 

  56. Nelles G, Jentzen W, Jueptner M, Muller S, Diener HC. Arm training induced brain plasticity in stroke studied with serial positron emission tomography. Neuroimage 2001; 13: 1146–54.

    Article  PubMed  CAS  Google Scholar 

  57. Cramer SC, Nelles G, Benson RR, et al. A functional MRI study of subjects recovered from hemiparetic stroke. Stroke 1997; 28: 2518–27.

    Article  PubMed  CAS  Google Scholar 

  58. Mottaghy FM. TMS: using brain plasticity to treat chronic post- stroke symptoms. Neurology 2003; 61: 881–2.

    Article  PubMed  Google Scholar 

  59. Kwakkel G, Kollen BJ, Wagenaar RC. Long term effects of intensity of upper and lower limb training after stroke: a randomised trial. J Neurol Neurosurg Psychiatry 2002; 72: 473–9.

    PubMed  CAS  Google Scholar 

  60. Werner RA, Kessker S. Effectiveness of an intensive outpatient rehabilitation program for postacute stroke patients. Am J Phys Med Rehabil 1996; 75: 114–20.

    Article  PubMed  CAS  Google Scholar 

  61. Kozlowski DA, James DC, Schallert T. Use-dependent exaggeration of neuronal injury after unilateral sensorimotor cortex lesion. J Neurosci 1996; 16: 4776–86.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Masiero MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masiero, S., Celia, A., Armani, M. et al. Robot-aided intensive training in post-stroke recovery. Aging Clin Exp Res 18, 261–265 (2006). https://doi.org/10.1007/BF03324658

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03324658

Key words

Navigation