Skip to main content
Log in

Effect of age on renal blood flow during exercise

  • Original Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

The present study examined the effect of age on the control of renal blood flow (RBF; PAH clearance) and renal vascular conductance (RVC=RBF/mean arterial pressure) during and after a bout of dynamic exercise in a warm environment. Six healthy fit older men (O; 67± 1 years) and 6 young men (Y; 24± 2 years) were matched for body size, adiposity, and maximal oxygen uptake (VO2max). Subjects exercised at ∼50% of V02max for 90 minutes in an environment of 30°C, 60% humidity on each of 4 consecutive days, with data collected on days 1 and 4. There was no effect of repeated days of exercise on RBF or RVC, despite a 4% expansion of blood volume in Y (<l°/o in O). On each day, resting RBF was significantly lower in O (e.g., Y=1127± 67, O=852± 114 mL/min on day 1; p<0.05). During exercise, Y decreased RBF to a significantly (p<0.05) greater extent [− 508 (− 45%) and − 365 (− 36%) mL/min on days 1 and 4, respectively] than the O [− 98 (− 12%) and − 83 (− 12%) mL/min]. RVC followed a similar pattern, decreasing by 52% and 37% during exercise for Y vs only 15% and 13% for O. The relationships between ARBF and HR and ΔRBF and plasma norepinephrine concentration were independent of age, implying similar sympathetic control during exercise. During recovery, RBF and RVC increased as expected in Y, but continued to decrease in O, falling significantly below exercise values (p<0.05). Compared to young men, fit healthy older men redistribute less blood flow away from the kidneys during dynamic exercise in the heat, an effect which appears to result from the existence of a smaller resting RBF rather than differential sympathetic control. On the other hand, chronological age seems to be associated with altered control of RBF and RVC during recovery from exercise. (Aging Clin. Exp. Res. 6: 293–302, 1994)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rowell L.B.: Cardiovascular adjustments to exercise and thermal stress. Physiol. Rev. 54: 75–159, 1974.

    PubMed  CAS  Google Scholar 

  2. Rowell L.B., Blackmon J.R., Martin R.H., Mazzerella J.A., Bruce R.A.: Hepatic clearance of indocyanine green in man under thermal and exercise stresses. J. Appl. Physiol. 20: 384–394, 1965.

    PubMed  CAS  Google Scholar 

  3. Barclay J.A., Cooke W.T., Kenney R.A., Nutt M.E.: The effects of water diuresis and exercise on the volume and composition of urine. Am. J. Physiol. 148: 327–337, 1947.

    PubMed  CAS  Google Scholar 

  4. Radigan L.R., Robinson S.: Effects of environmental heat stress and exercise on renal blood flow and filtration rate. J. Appl. Physiol. 2: 185–191, 1949.

    PubMed  CAS  Google Scholar 

  5. Smith J.H., Robinson S., Pearcy M.: Renal responses to exercise, heat, and dehydration. J. Appl. Physiol 4: 659–665, 1952.

    PubMed  CAS  Google Scholar 

  6. Zambraski E. J.: Renal regulation of fluid homeostasis during exercise. In: Gisolfi C.V., Lamb D.R. (Eds.), Fluid Homeostasis During Exercise. Benchmark Press, Carmel, IN, 1990, pp. 247–280.

    Google Scholar 

  7. Castenfors J.: Renal function during prolonged exercise. Ann. NY Acad. Sci. 301: 151–159, 1977.

    Article  PubMed  CAS  Google Scholar 

  8. Grimby G.: Renal clearances during prolonged supine exercise at different loads. J. Appl. Physiol 20: 1294–1298, 1965.

    Google Scholar 

  9. Galbo H., Holst J.J., Christensen N.J.: Glucagon and plasma catecholamine responses to graded and prolonged exercise in man. J. Appl Physiol. 38: 70–76, 1975.

    PubMed  CAS  Google Scholar 

  10. Tidgren D., Hjemdahl P., Theodorsson E., Nussberger J.: Renal neurohormonal and vascular responses to dynamic exercise in humans. J. Appl Physiol. 70: 2279–2286, 1991.

    PubMed  CAS  Google Scholar 

  11. Rowell L.B.: Human Cardiovascular Control. Oxford University Press, New York, 1993.

    Google Scholar 

  12. Rowell L.B., Brengelmann G.L., Freund P.R.: Unaltered norepinephrine: heart rate relationship with exogenous heat. J. Appl Physiol. 62: 646–650, 1987.

    PubMed  CAS  Google Scholar 

  13. Davies D.F., Shock N.W.. Age changes in glomerular filtration rate, effective renal plasma flow and tubular excretory capacity in adult males. J. Clin. Invest 29: 496–507, 1950.

    Article  PubMed  CAS  Google Scholar 

  14. Watkin D.M., Shock N.W.: Agewise standards for CIN, CPAH, and TmPAH in adult males. J. Clin. Invest. 34: 969, 1955.

    Google Scholar 

  15. Convertino V.A., Brock P.J., Keil L.C., Bernauer E.M., Greenleaf J.E.: Exercise training-induced hypervolemia: role of plasma albumin, renin, and vaso-pressin. J. Appl. Physiol 48: 665–669, 1980.

    PubMed  CAS  Google Scholar 

  16. Green H.J., Jones L.L., Hughson R.L., Painter D.C., Farrance B.W.: Training-induced hypervolemia: lack of an effect on oxygen utilization during exercise. Med. Sci. Sports Exerc. 19: 202–206, 1987.

    PubMed  CAS  Google Scholar 

  17. Green H.J., Jones L.L., Painter D.C.: Effects of exercise induced hypervolemia on cardiac function during prolonged exercise. Med. Sci. Sports Exerc. 22: 488–493, 1990.

    PubMed  CAS  Google Scholar 

  18. Henane R., Flandrois R., Charbonnier J.P.: Increases in sweating sensitivity by endurance conditioning in man. J. Appl Physiol 43: 822–828, 1977.

    PubMed  CAS  Google Scholar 

  19. Pandolf K.B., Cadarette B.S., Sawka M.N., Young A.J., Francesconi R.P., Gonzalez R.R.: Thermoregulatory responses of middle-aged and young men during dry-heat acclimation. J. Appl. Physiol. 65: 65–71, 1988.

    PubMed  CAS  Google Scholar 

  20. DuBois D., DuBois E.F.: Clinical calorimetry: a formula to estimate the appropriate surface area if height and weight be known. Arch. Intern. Med. 17: 863–871, 1916.

    Article  CAS  Google Scholar 

  21. Allen T.H., Peng M.T., Chen K.P., Huang T.F., Chang C., Fang H.S.: Prediction of adiposity from skinfolds and the curvilinear relationship between external and internal adiposity. Metab. Clin. Exp. 5: 346–352, 1956.

    PubMed  CAS  Google Scholar 

  22. Voorrips L.E., Ravelli A.C.J., Dongelmans P.C.A., Deurenberg P., Staveren W.A.V.: A physical activity questionnaire for the elderly. Med. Sci. Sports Exerc. 23: 974–979, 1991.

    PubMed  CAS  Google Scholar 

  23. Consolazio C.F., Johnson R.E., Pecora L.J.: Body composition procedures. In: Physiological Measurements of Metabolic Functions in Man. McGraw-Hill Book Company, New York, 1963, pp. 265–276.

    Google Scholar 

  24. Greenleaf J.E., Convertino V.A., Mangseth G.R.: Plasma volume during stress in man: osmolality and red cell volume. J. Appl Physiol. 47: 1031–1038, 1979.

    PubMed  CAS  Google Scholar 

  25. Dill D.B., Costill D.L.: Calculation of percentage changes in volume of blood, plasma, and red cell in dehydration. J. Appl Physiol 37: 247–248, 1974.

    PubMed  CAS  Google Scholar 

  26. Chasis H., Redish J., Goldring W., Ranges H.A., Smith H.W.: The use of sodium p-aminohippurate for the functional evaluation of the human kidney. J. Clin. Invest. 24: 583–588, 1945.

    Article  PubMed  CAS  Google Scholar 

  27. Harvey R.B., Brothers A.J.: Renal extraction of para-amino hippurate and creatinine measured by continuous in vivo sampling of arterial and renal vein blood. Ann. NY Acad. Sci. 102: 46–54, 1962.

    Article  PubMed  CAS  Google Scholar 

  28. Brun C.: A rapid method for the determination of para-aminohippuric acid in kidney function tests. J. Lab. Clin. Med. 37: 955–958, 1951.

    PubMed  CAS  Google Scholar 

  29. Myers B.D., Peterson C., Molina C., Tomlanovich S.J., Newton L.D., Nitkin R., Sandier H., Murad F.: Role of cardiac atria in human renal response to changing plasma volume. Am. J. Physiol 254: F562–F573, 1988.

    PubMed  CAS  Google Scholar 

  30. van Beaumont W.: Red cell volume with changes in plasma osmolality during maximal exercise. J. Appl Physiol 35: 47–50, 1973.

    PubMed  Google Scholar 

  31. van Beaumont W., Greenleaf J.E., Juhos L.: Disproportionate changes in hematocrit, plasma volume, and proteins during exercise and bed rest. J. Appl. Physiol 33: 55–61, 1972.

    PubMed  Google Scholar 

  32. Keeler R.: The effects of “dead space” and urine flow changes on the measurements of glomerular filtration rate by clearance methods. Can. J. Physiol. Pharm. 61: 435–438, 1983.

    Article  CAS  Google Scholar 

  33. Castenfors J.: Renal function during exercise. Acta Physiol Scand. 70 (suppl. 293): 1–44, 1967.

    Google Scholar 

  34. Taverner D., Craig K., Mackay I., Watson M.L.: Effects of exercise on renal function in patients with moderate impairment of renal function compared to normal men. Nephron 57: 288–292, 1991.

    Article  PubMed  CAS  Google Scholar 

  35. Fleg J.L., Tzankoff S.P., Lakatta E.G.: Age-related augmentation of plasma catecholamines during dynamic exercise in healthy males. J. AppL Physiol. 59: 1033–1039, 1986.

    Google Scholar 

  36. Lehmann M., Keul J.: Age-associated changes of exercise-induced plasma catecholamine responses. Eur. J. AppL Physiol. 55: 302–306, 1986.

    Article  CAS  Google Scholar 

  37. Sachs C., Hamberger B., Kaijser L.: Cardiovascular responses and plasma catecholamines in old age. Clin. Physiol. 5: 553–565, 1985.

    Article  PubMed  CAS  Google Scholar 

  38. Mazzeo R.S., Grantham P.A.: Sympathetic response to exercise in various tissues with advancing age. J. Appl. Physiol. 66: 1506–1508, 1989.

    PubMed  CAS  Google Scholar 

  39. Kregel K.C.: Influence of aging on tissue-specific noradrenergic activity at rest and during nonexertional heat stress in rats. J. Appl. Physiol. 76: 1226–1231, 1994.

    PubMed  CAS  Google Scholar 

  40. Kastello G.M., Sothmann M.S., Murthy V.S.: Young and old subjects matched for aerobic capacity have similar noradrenergic responses to exercise. J. Appl. Physiol. 74:49–54, 1993.

    PubMed  CAS  Google Scholar 

  41. Hohimer A.R., Smith I.A.: Decreased renal blood flow in the baboon during mild dynamic leg exercise. Am. J. Physiol. 236: H141–H150, 1979.

    PubMed  CAS  Google Scholar 

  42. Zambraski E.J., Tucker M.S., Lakas C.S., Grassl S.M., Scanes C.G.: Mechanism of renin release in the exercising dog. Am. J. Physiol. 246: E71–E76, 1984.

    PubMed  CAS  Google Scholar 

  43. Chapman C.B., Henschel A., Minckler J., Forsgren A., Keys A.: The effect of exercise on renal plasma flow in normal male subjects. J. Clin. Invest. 27: 639–644, 1948.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenney, W.L., Zappe, D.H. Effect of age on renal blood flow during exercise. Aging Clin Exp Res 6, 293–302 (1994). https://doi.org/10.1007/BF03324255

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03324255

Keywords

Navigation