Skip to main content
Log in

Invertebrates can tell us something about senescence

  • Review Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

Senescence is a ubiquitous phenomenon, i.e., all vertebrates and invertebrates will ultimately manifest it. Any attempt to answer the question of adaptive significance of the aging process must take into account the universality of and change in the DNA molecule that governs, integrates, regulates and ensures the vitality of all organisms. With invertebrates and from the comparative viewpoint, there are examples of: 1) rapid senescence and sudden death; 2) gradual senescence with definite life span; 3) negligible senescence; 4) genetic influence on life span, mortality rates, and age- related diseases. Although these characteristics are ascribed to invertebrates and vertebrates, this need not force upon invertebrates the organization, structure and eventual features of vertebrate senescence. “Invertebrate gerontologists” can thus, freely delve into certain unique aspects of what may be the more primitive mechanisms of aging in invertebrates. In contrast, using the opposite strategy that is still problematic, i.e., linking invertebrate and vertebrate aging, seems to give us an approach to universality that might eventually reveal more readily obvious and homologous kinship. (Aging Clin. Exp. Res. 6: 5- 23, 1994)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Johnson T.E.: Aging can be genetically dissected into component processes using long-lived lines of Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 84: 3777–3781, 1987.

    Article  PubMed  CAS  Google Scholar 

  2. Williams T.F.: Animal studies are teaching us about aging. The Gerontologist 5: 580–582, 1992.

    Article  Google Scholar 

  3. Cristofalo V.J., Lawton M.P.: Special Focus on the Biology of Aging. Ann. Rev. Gerontol. Geriatr. 10, New York, Springer, 1990.

    Google Scholar 

  4. Finch C.E.: Longevity, Senescence, and the Genome. The University of Chicago Press, Chicago, IL, 1990.

    Google Scholar 

  5. Williams T.F., Sprout R.L., Warner H.R.: Biology of Aging. Generations (Special Issue) 16, 1992.

  6. Masoro E.J.: The role of animal models in meeting the gerontologic challenge of the 21st century. The Gerontologist 32: 627–633, 1992.

    Article  PubMed  CAS  Google Scholar 

  7. Mitchell D.H., Stiles J.W., Satelli J., Sanadi D.R.: Synchronous growth and aging of Caenorhabditis elegans in the presence of fluorodeoxyuridine. J. Gerontol. 34: 28–36, 1979.

    Article  PubMed  CAS  Google Scholar 

  8. Johnson T.E., Conley W.L., Keller M.L.: Long-lived lines of Caenorhabditis elegans can be used to establish predictive biomarkers of aging. Exp. Gerontol. 23: 281–295, 1988.

    Article  PubMed  CAS  Google Scholar 

  9. Johnson T.E.: Increased life-span of age-1 mutants in Caenorhabditis elegans. Science 249: 908–912, 1990a.

    Article  PubMed  CAS  Google Scholar 

  10. Johnson T.E.: Caenorhabditis elegans offers the potential for molecular dissection of the aging processes. In: Schneider E.L., Rowe J.W. (Eds.), Handbook of the Biology of Aging, ed. 3. Academic Press, San Diego, CA, 1990b, pp. 45–59.

    Chapter  Google Scholar 

  11. Ishii H., Takahashi K., Tomita S., Eino T., Honda S., Yoshino K., Suzuki K.A.: Methyl viologen-sensitive mutant of the nematode Caenorhabditis elegans. Mutat. Res. 237: 165–171, 1990.

    Article  PubMed  CAS  Google Scholar 

  12. Honda S., Naoaki I., Suzuki K., Matsuo M.: Oxygen- dependent perturbation of life span and aging rate in the nematode. J. Gerontol. 48: B57–B61, 1993.

    Article  PubMed  CAS  Google Scholar 

  13. Rose M.R.: Evolutionary Biology of Aging. Oxford University Press, Oxford, 1991.

    Google Scholar 

  14. Curtsinger J.W., Fukui H.H., Townsend D.R., Vaupel J.W.: Demography of genotypes: Failure of the limited life-span paradigm in Drosophila melanogaster. Science 258: 461–463, 1992.

    Article  PubMed  CAS  Google Scholar 

  15. Cooper E.L., Baculi B.S.: Degenerative changes in the annelid Lumbricus terrestris. J. Gerontol. 23: 375–381, 1968.

    Article  PubMed  CAS  Google Scholar 

  16. Cooper E.L.: Cell-mediated immunity and aging in annelids. In: Mitchell D.H., Johnson T.E. (Eds.), Invertebrate Models in Aging Research. CRC Press, Boca Raton, 1984, pp. 121–142.

    Google Scholar 

  17. Cooper E.L.: Transplantation immunity in annelids. I. Rejection of xenografts exchanged between Lumbricus terrestris and Eisenia foetida. Transplantation 6: 322–337, 1968.

    Article  PubMed  CAS  Google Scholar 

  18. Cooper E.L.: Neoplasia and transplantation immunity in annelids. J. Nat. Cancer Inst. 31: 655–659, 1969.

    CAS  Google Scholar 

  19. Cooper E.L.: Perspectives in neuroimmunomodulation: Lessons from the comparative approach. Anim. Biol.1: 169–180, 1992.

    Google Scholar 

  20. Cooper E.L.: Evolutionary development of the neuroendocrineimmune system. Adv. Neuroimmunol. 1: 83–96, 1991.

    Article  CAS  Google Scholar 

  21. Cooper E.L., Walford R.L.: New perspectives on aging and immunity: lower animals, ontogeny, phylogeny and immunoendocrinology. Dev. Comp. Immunol. 6: 391–393, 1982.

    Article  PubMed  CAS  Google Scholar 

  22. Gershwin M.E., Cooper E.L.: Animal Models of Comparative and Developmental Aspects of Immunity and Disease. Pergamon Press, New York, 1978.

    Google Scholar 

  23. Roch P., Cooper E.L.: Cellular but not humoral antibacterial activity of earthworms is inhibited by Aroclor 1254 (PCB). Ecotox. Environ. Safety 122: 283–290, 1991.

    Article  Google Scholar 

  24. Cooper E.L., Roch P.: The capacities of earthworms to heal wounds and to destroy allografts are modified by polychlorinated biphenyls (PCB). J. Invert. Pathol. 60: 59–63, 1992.

    Article  CAS  Google Scholar 

  25. Antonini F.M., Magnolfi S.: Successful aging and artistic creativity. Aging Clin. Exp. Res. 4: 93–101, 1992.

    Article  CAS  Google Scholar 

  26. Weismann A.: The duration of life (a paper presented in 1881). In: Poulton E.B., Schonland S., Shipley A.E. (Eds.), Essays Upon Heredity and Kindred Biological Problems. Clarendon, Oxford, Vol. 1, 1889, pp. 1–66.

    Google Scholar 

  27. Martinez D.E., Levinton J.S.: Asexual metazoans undergo senescence. Proc. Natl. Acad. Sci. USA 89: 9920–9923,1992.

    Article  PubMed  CAS  Google Scholar 

  28. Bell G.: Sex and Death in Protozoa: The History of an Obsession. Cambridge University Press, Cambridge, 1988.

    Google Scholar 

  29. Sabbadin A.: Colonial structure and genetic patterns in ascidians. In: Larwood G., Rosen B.R. (Eds.), Biology and Systematics of Colonial Organisms. Academic Press, London, 1979, pp. 433–444.

    Google Scholar 

  30. Hughes T.P., Jackson J.B.C.: Do corals lie about their age? Some demographic consequences of partial mortality, fission, and fusion. Science 209: 713–715, 1980.

    Article  PubMed  CAS  Google Scholar 

  31. Promislow D.E.L.: On size and survival: Progress and pitfalls in the allometry of life span. J. Gerontol. 48: B115–B123, 1993.

    Article  PubMed  CAS  Google Scholar 

  32. Giacomoni P.O.: Aging and cellular defense mechanisms. Ann. N.Y. Acad. Sci. 663: 1–3, 1992.

    Article  PubMed  CAS  Google Scholar 

  33. Whitehead I., Grigliatti T.A.: A correlation between DNA repair capacity and longevity in adult Drosophila melanogaster. J. Gerontol. 4: B124–B132, 1993.

    Article  Google Scholar 

  34. Cooper E.L., Zapata A., Garcia-Barrutia M., Ramirez J.A.: Aging changes in lymphopoietic and myelopoietic organs in the annual cyprinodont fish, Nothobranchius guentheri. Exp. Gerontol. 18: 29–38, 1983.

    Article  PubMed  CAS  Google Scholar 

  35. Cooper E.L.: Evolution of blood cells. Ann. Immunol. (Inst. Pasteur) 127C: 817–825, 1976a

    Google Scholar 

  36. Cooper E.L.: The earthworm coelomocyte: A mediator of cellular immunity. In: Wright R.K., Cooper E.L. (Eds.), Phylogeny of Thymus and Bone Marrow — Bursa Cells. Biomedical Press, Elsevier North Amsterdam, Holland, 1976b, pp. 9–18.

    Google Scholar 

  37. Cooper E.L.: Evolution of cell mediated immunity. In: Solomon J.B., Horton J.D. (Eds.), Developmental Immunobiology. North Holland Elsevier, Amsterdam, Holland, 1977, pp. 99–105.

    Google Scholar 

  38. Burnet F.M.: Evolution of the immune process in vertebrates. Nature 218: 426–430, 1968.

    Article  PubMed  CAS  Google Scholar 

  39. Burnet F.M.: Self-recognition in colonial marine forms and flowering plants in relation to the evolution of immunity. Nature 232: 230–235, 1971.

    Article  PubMed  CAS  Google Scholar 

  40. Burnet F.M.: Invertebrate precursors to immune responses. In: Cooper E.L. (Ed.), Contemporary Topics in Immunobiology, Vol. 4. Invertebrate Immunology. Plenum, NewYork, 1974, pp.13–24.

    Chapter  Google Scholar 

  41. Raftos D.A., Stillman D.L., Cooper E.L.: In vitro culture of tissue from the tunicate Styela clava. In Vitro 26: 962–970, 1990.

    CAS  Google Scholar 

  42. Raftos D.A., Cooper E.L.: Proliferation of lymphocyte-like cells from the solitary tunicate Styela clava in response to allogeneic stimuli. J. Exp. Zool. 260: 391–490, 1991.

    Article  PubMed  CAS  Google Scholar 

  43. Fabris N.: Biomarkers of aging in the neuroendocrine-immune domain: Time for a new theory of aging. Ann. N.Y. Acad. Sci. 663: 335–348, 1992.

    Article  PubMed  CAS  Google Scholar 

  44. Gould S.J., Eldredge N.: Punctuated equilibrium comes of age. Nature 366: 223–227, 1993.

    Article  PubMed  CAS  Google Scholar 

  45. Wake M.H.: The evolution of integration of biological systems: An evolutionary perspective through studies on cells, tissues and organs. Am. Zool. 30: 897–906, 1990.

    Google Scholar 

  46. Ridley M.: The Explanation of Organic Diversity: The Comparative Method and Adaptations for Mating. Clarendon Press, Oxford, 1983.

    Google Scholar 

  47. Rieppel O.C.: Fundamentals of Comparative Biology. Birkhauser, Basel, 1987.

    Google Scholar 

  48. Bartholomew G.: Interspecific comparison as a tool for ecological physiologists. In: Feder M.E., Bennett A.F., Burggren W.W., Huey R.B. (Eds.), New Directions in Ecological Physiology. Cambridge University Press, Cambridge, 1987, pp.11.

    Google Scholar 

  49. Walford R.L., Harris S.B., Gunion M.W.: The calorically restricted low-fat nutrient dense diet in Biosphere 2 significantly lowers blood glucose, total leukocyte count, cholesterol, and blood pressure in humans. Proc. Natl. Acad. Sci. USA 89: 11533–11537, 1992.

    Article  PubMed  CAS  Google Scholar 

  50. Weindruch R., Walford R.L.: The Retardation of Aging and Disease by Dietary Restriction. Thomas, Springfield, IL, 1988.

    Google Scholar 

  51. Franceschi C., Monti D., Scarfi M.R., Zeni O., Temperani P., Emilia G., Sansoni P., Lioi M.B, Troiano L., Agnesini C., Salvioli S., Cossarizza A.: Genomic instability and aging: Studies in centenarians (successful aging) and in patients with Down’s syndrome (accelerated aging). Ann. N.Y. Acad. Sci. 663: 4–16, 1992.

    Article  PubMed  CAS  Google Scholar 

  52. Ottaviani E., Caselgrandi E., Bondi M., Cossarizza A., Monti D., Franceschi C.: The “immuno-mobile” brain: Evolutionary evidence. Adv. Neuroimmunol. 1: 27–39, 1991.

    Article  CAS  Google Scholar 

  53. Kirkwood T.B.L., Rose M.R.: Evolution of senescence: Late survival sacrificed for reproduction. Phil. Trans. R. Soc. Lond. B. 332: 15–24, 1991.

    Article  CAS  Google Scholar 

  54. Kirkwood T.B.L., Franceschi C: Is aging as complex as it would appear? New perspectives in aging research. Ann. N.Y. Acad. Sci. 663: 412–417, 1992.

    Article  PubMed  CAS  Google Scholar 

  55. Monti D., Grassilli E., Troiano L., Cossarizza A., Salvioli S., Barbieri D., Agnesini C., Bettuzzi S., Ingletti M.C., Corti. A., Franceschi C.: Senescence, immortalization, and apoptosis: An intriguing relationship. Ann. N.Y. Acad. Sci. 663: 70–82, 1992.

    Article  Google Scholar 

  56. Cooper E.L.: Immunity and neoplasia in mollusks. Isr. J. Med. Sci. 12: 479–494, 1976c.

    PubMed  CAS  Google Scholar 

  57. Cinader B.: Compartmentalization (multicentricity) and interaction between sub-compartments. Ann. N.Y. Acad. Sci. 663: 294–304, 1992.

    Article  PubMed  CAS  Google Scholar 

  58. Prendergast R.A., Suzuki M.: Invertebrate protein stimulating mediator of delayed hypersensitivity. Nature 227: 277–279, 1970.

    Article  PubMed  CAS  Google Scholar 

  59. Prendergast R.A., Liu S.H.: Isolation and characterization of sea star factor. Scand. J. Immunol. 5: 873–880, 1976.

    Article  PubMed  CAS  Google Scholar 

  60. Prendergast R.A., Lutty G.A., Scott A.L.: Directed inflammation: The phylogeny of lymphokines. Dev. Comp. Immunol. 7: 629–632, 1983.

    Article  CAS  Google Scholar 

  61. Beck G., Habicht G.S.: Isolation and characterization of a primitive IL-1-like protein from an invertebrate. Proc. Natl. Acad. Sci. USA 83: 7429–7433, 1986.

    Article  PubMed  CAS  Google Scholar 

  62. Beck G., O’Brien R.F., Habicht G.S.: Invertebrate cy- tokines: The phylogenetic emergence of interleukin-1. Bioessays 11: 62–67, 1989.

    Article  PubMed  CAS  Google Scholar 

  63. Beck G., Vasta G.R., Marchalonis J.J., Habicht G.S.: Characterization of interleukin-1 activity in tunicates. Comp. Biochem. Physiol. 92B: 93–98, 1989.

    CAS  Google Scholar 

  64. Luquet G., Lemaitre J., Leclerc M.: Evidence for the production of an interleukin like protein by Asterias rubens (axial organ cells) in mixed leukocyte cultures. Lymphokine Research 8: 451–458, 1989.

    PubMed  CAS  Google Scholar 

  65. Hughes T.K. Jr., Smith E.M., Chin R., Cadet P., Sinisterra J., Leung M.K., Shipp M.A., Scharrer B., Stefano G.B.: Interaction of immunoactive monokines (interleukin 1 and tumor necrosis factor) in the bivalve mollusk Mytilus edulis. Proc. Natl. Acad. Sci. USA 87: 4426–4429,1990.

    Article  PubMed  CAS  Google Scholar 

  66. Raftos D.A., Cooper E.L., Habicht G.S., Beck G.: Invertebrate cytokines: Tunicate cell proliferation stimulated by an interleukin 1-like molecule. Proc. Natl. Acad. Sci. USA 88: 9518–9522, 1991.

    Article  PubMed  CAS  Google Scholar 

  67. Burke R.D., Watkins R.F.: Stimulation of starfish coelomocytes by interleukin-1. Biochem. Biophys. Res. Comun. 180: 579–584, 1991.

    Article  CAS  Google Scholar 

  68. Beck G., Habicht G.S.: Purification and biochemical characterization of an invertebrate interleukin 1. Mol. Immunol. 28: 577–584, 1991.

    Article  PubMed  CAS  Google Scholar 

  69. Hughes T.K.Jr., Smith E.M., Barnett J.A., Charles R., Stefano G.B.: LPS stimulated invertebrate hemocytes: A role for immunoreactive TNF and IL-1. Dev. Comp. Immunol. 15: 117–122, 1991.

    Article  PubMed  Google Scholar 

  70. Stefano G.B., Smith E.M., Hughes T.K.: Opioid induction of immunoreactive interleukin-1 in Mytilus edulis and human immunocytes: An interleukin-like substance in invertebrate neural tissue. J. Neuroimmunol 32: 29–34, 1991.

    Article  PubMed  CAS  Google Scholar 

  71. Ottaviani E.: Some facts and speculation on the origin of the immunoneuroendocrine system and its correlation with aging. Ann. N.Y. Acad. Sci. 663: 331–334, 1992.

    Article  PubMed  CAS  Google Scholar 

  72. Fabris N.: Neuroendocrine-immune interactions: A theoretical approach to aging. Arch. Gerontol. Geriatr. 12: 219–230, 1991.

    Article  PubMed  CAS  Google Scholar 

  73. Reinke R., Krantz D.E., Yen D., Zipursky S.L.: Chaoptin, a cell surface glycoprotein required for Drosophila photoreceptor cell morphogenesis, contains a repeat motif found in yeast and human. Cell 52: 291–298, 1988.

    Article  PubMed  CAS  Google Scholar 

  74. Ericsson A.G., Barbany W.J., Friedman W.J., Persson H.: Molecular cloning and characterization of genes predominantly expressed in the neuroendocrine and immune system. PNEI 4: 26–41, 1991.

    Google Scholar 

  75. Raftos D.A., Stillman D.A., Cooper E.L.: In vitro culture of tissue from the tunicate Styela clava. In Vitro Cell Dev. Biol. 26: 962–970, 1990.

    Article  PubMed  CAS  Google Scholar 

  76. Sawada T., Zhang J., Cooper E.L.: Sustained viability and proliferation of hemocytes from cultured pharynx of Styela clava. Marine Biology 1994 (in press).

  77. Cooper E.L., Raftos D.L.: The pharyngeal region of tunicates. In: Mestecky J. (Ed.), The Prague Symposium, The Mucosal Immunology Society. Plenum Press, 1994 (in press).

  78. Stefano G.B., Kimura T., Stefano J.M., Finn J.P., Leung M.K., Smith E.M., Mallozzi L., Pryor S., Hughes T.K.: Autoimmunomodulation: Age-related opioid differences in vertebrate and invertebrate immune systems. Ann. N.Y. Acad. Sci. 663: 396–402, 1992.

    Article  PubMed  CAS  Google Scholar 

  79. Stefano G.B., Kimura T., Stefano J.M., Finn J., Leung M.K., Smith E.M., Hughes T.K.: Age-related differences in met-enkephalin levels and numbers of opioid responsive cells in vertebrate and invertebrate immune systems. Prog. NeuroEndocrinImmunology 4: 92–98, 1991.

    Google Scholar 

  80. Cooper E.L.: Immune system: an overview. In: Cooper E.L. (Ed.), Stress, Immunity and Aging. Marcel Dekker Inc., New York, 1984, pp. 13–26.

    Google Scholar 

  81. Cooper E.L.: Stress, Immunity and Aging. Marcel Dekker Inc., New York, 1984.

    Google Scholar 

  82. Wojdani A., Cooper E.L.: The influence of ambient temperature on antibody production and aging. In: Cooper E.L., Brazier M.A.B. (Eds.), Developmental Immunology: Clinical Problems and Aging. Academic Press, New York, 1982, pp. 277–289.

    Google Scholar 

  83. Cooper E.L., Brazier M.A.B.: Developmental Immunology: Clinical Problems and Aging. UCLA Forum in Medical Sciences, Vol. 25. Academic Press, New York, 1982.

    Google Scholar 

  84. Cooper E.L.: Contemporary Topics in Immunobiology, Vol. 4. Invertebrate Immunology. Plenum, New York, 1974.

    Google Scholar 

  85. Cooper E.L.: Comparative Immunology. Prentice-Hall, Englewood Cliffs, NJ, 1976.

    Google Scholar 

  86. Friedman D.B., Johnson T.E.: A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118: 75–86, 1988a.

    PubMed  CAS  Google Scholar 

  87. Friedman D.B., Johnson T.E.: Three mutants that extend both mean and maximum life span of the nematode Caenorhabditis elegans define the age-1 gene. J. Gerontol. 43: B102–109, 1988b.

    Article  PubMed  CAS  Google Scholar 

  88. Masoro E.J.: Potential role of the modulation of fuel use in the anti-aging action of dietary restriction. Ann. N.Y. Acad. Sci. 663: 403–411, 1992.

    Article  PubMed  CAS  Google Scholar 

  89. Comfort A.: Effect of delayed and resumed growth on the longevity of a fish (Lebistes reticulatus Peters) in captivity. Gerontologia 8: 150–155, 1963.

    Article  Google Scholar 

  90. Campbell R.N.: Ferox trout, Salmo trutta L. and charr, Salvelincis alpinus L in Scottish lochs. J. Fish. Biol. 14: 1–29, 1979.

    Article  Google Scholar 

  91. Ferguson A., Mason F.M.: Allozyme evidence for reproductively isolated sympatric populations of brown trout Salmo trutta L. in Lough Melvin, Ireland. J. Fish. Biol. 18: 629–642, 1981.

    Article  Google Scholar 

  92. Reynoldson T.B.: A quantitative study of the population biology of Polycelsis tenuis (Ijama) (Turbellaria, Tricladida), and Dendrocoelum lacteum. Oikis 11: 125–141, 1960.

    Article  Google Scholar 

  93. Sohal R.S.: The free radical hypothesis of aging: An appraisal of the current status. Aging Clin. Exp. Res. 5: 3–17, 1993.

    CAS  Google Scholar 

  94. Sohal R.S., Allen R.G.: Oxidative stress as a causal factor in differentiation and aging: a unifying hypothesis. Exp. Gerontol. 25: 499–522, 1990.

    Article  PubMed  CAS  Google Scholar 

  95. Williams G.C.: Pleiotropy, natural selection and the evolution of senescence. Evolution 11: 398–411, 1957.

    Article  Google Scholar 

  96. Charlesworth B.: Evolution in age-structured populations. Cambridge University Press, Cambridge, 1980.

    Google Scholar 

  97. Kirkwood T.B.L., Rose M.R.: Evolution of senescence: Late survival sacrifice for reproduction. Phil. Trans. Roy. Soc. Lond. B 332: 15–24, 1991.

    Article  CAS  Google Scholar 

  98. Kirkwood T.B.L.: Evolution of aging. Nature 270: 301–304, 1977.

    Article  PubMed  CAS  Google Scholar 

  99. Kirkwood T.B.L.: Repair and its evolution: Survival versus reproduction. In: Townsend C.R., Calow P., (Eds.), Physiological Ecology: An Evolutionary Approach to Resource Use. Blackwell Scientific Publications, Oxford, 1981, pp. 165–189.

    Google Scholar 

  100. Kirkwood T.B.L., Holliday R.: The evolution of aging and longevity. Proc. Roy. Soc. Lond. B 205: 531–546, 1979.

    Article  CAS  Google Scholar 

  101. Rose M.R.: Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution 38: 1004–1010, 1984.

    Article  Google Scholar 

  102. Luckinbill L.S., Clare M.J.: Selection for life span in Drosophila melanogaster. Heredity 55: 9–18, 1985.

    Article  PubMed  Google Scholar 

  103. Cooper E.L.: Immunity mechanisms. In: Lofts B. (Ed.), Physiology of the Amphibia, Vol. III. Academic Press, New York, 1976, pp. 163–272.

    Chapter  Google Scholar 

  104. Tata J.R.: Gene expression during metamorphosis: An ideal model for postembryonic development. BioEssays 15: 239–248, 1993.

    Article  PubMed  CAS  Google Scholar 

  105. Wadewitz A.G., Lockshin R.A.: Programmed cell death: dying cells synthesize a coordinated, unique set of proteins in two different episodes of cell death. FEES Lett 241: 19–23, 1988.

    Article  CAS  Google Scholar 

  106. Ellis H.M., Horvitz H.R.: Genetic control of programmed cell death in the nematode C. elegans. Cell 44: 817–829, 1986.

    Article  CAS  Google Scholar 

  107. Hengartner M.O., Ellis R.E., Horvitz H.R.: Caenorhabditis elegans gene ced-9 protects cells from programmed cell death. Nature 356: 494–499, 1992.

    Article  PubMed  CAS  Google Scholar 

  108. Du Pasquier L.: Evolution of the immune system. In: Paul W.E. (Ed.), Fundamentals of Immunology, ed. 2. Raven Press Ltd., New York, 1989, pp. 139–165.

    Google Scholar 

  109. Comfort A.: The Biology of Senescence, ed. 3. Churchill Livingstone, Edinburgh, 1979.

    Google Scholar 

  110. Austad S.N.: The comparative perspective and choice of animal models in aging research. Aging Clin. Exp. Res. 5: 259–289, 1993.

    CAS  Google Scholar 

  111. Finch C.E.: Theories of aging. Aging Clin. Exp. Res. 5: 277–267, 1993.

    CAS  Google Scholar 

  112. Johnson T.E.: Genetic influence on aging in mammals and invertebrates. Aging Clin. Exp. Res. 5: 299–307, 1993.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cooper, E.L. Invertebrates can tell us something about senescence. Aging Clin Exp Res 6, 5–23 (1994). https://doi.org/10.1007/BF03324208

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03324208

Keywords

Navigation