Skip to main content
Log in

The free radical hypothesis of aging: An appraisal of the current status

  • Review Article
  • Published:
Aging Clinical and Experimental Research Aims and scope Submit manuscript

Abstract

The objective of this review article is to assess the current status of the predictions of the free radical hypothesis of aging, highlighting some of the controversies surrounding the previous assumptions. Topics for discussion include: metabolic rate and aging, oxidative stress and molecular damage during aging, antioxidants and aging, antioxidant defenses and life spans of different species, and pro-oxidant generation and aging. On the basis of currently available evidence, it is concluded that the free radical hypothesis has neither been proven nor disproven. Some of the earlier assumptions such as that antioxidant intake increases life span, or antioxidant defenses decline with age, or antioxidant defenses are positively correlated with life spans of different species, or that longer life spans are associated with lower autoxidizability, are not clearly supportable. Similarly, the assumption that oxygen free radicals govern the rate of aging via the infliction of molecular damage lacks compelling support. Enough information to lift the free radical hypothesis above the level of speculation has not yet been amassed. Clearly, further studies, some of which specifically focus on disproving this hypothesis, are needed to confirm its veracity. (Aging Clin. Exp. Res. 5: 3–17, 1993)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harman D.: Aging: A theory based on free radical and radiation chemistry. J. Gerontol 11: 298–300, 1956.

    Article  PubMed  CAS  Google Scholar 

  2. Gerschman R., Gilbert D.L., Nye S.W., Dwyer P., Fenn W.O.: Oxygen poisoning and X-radiation: a mechanism in common. Science 19: 623–629,1954.

    Article  Google Scholar 

  3. Medvedev Z.: An attempt at a rational classification of theories of aging. Biol. Rev. 65: 375–398, 1990.

    Article  PubMed  CAS  Google Scholar 

  4. Shmookler Reis R.J.: The molecular pathology of senescence. In: Rothstein M. (Ed.), Review of Biological Research in Aging, Vol. 4. A.R. Liss, Inc., New York, 1990, pp. 293–313.

    Google Scholar 

  5. Harman D.: The free-radical theory of aging. In: Pryor W.A. (Ed.), Free Radicals in Biology, Vol. V. Academic Press, New York, 1982, pp. 255–275.

    Google Scholar 

  6. Cutler R.G.: Antioxidants, aging and longevity. In: Pryor W.A. (Ed.), Free Radicals in Biology 6: Academic Press, New York, 1984, pp. 371–428.

    Google Scholar 

  7. Mehlhorn R.J., Cole G.: The free radical theory of aging: a critical review. Adv. Free Rad. Biol. Med. 1: 165–223, 1985.

    Article  CAS  Google Scholar 

  8. Allen R.G.: Role of free radicals in senescence. In: Cristofalo V.J., Lawton M.P. (Eds.), Annual Review of Gerontology and Geriatrics. Springer, New York, 1990, pp. 198–210.

    Google Scholar 

  9. Balin A.K.: Testing the free radical theory of aging. In: Adelman R.C., Roth G.C. (Eds.), Testing the Theories of Aging. CRC Press, Boca Raton, 1982, pp. 137–182.

    Google Scholar 

  10. Sohal R.S., Allen R.G.: Relationship between oxygen metabolism, aging and development. Adv. Free Rad. Biol. Med. 2: 117–160, 1986.

    Article  CAS  Google Scholar 

  11. Fridovich I.: The biology of oxygen radicals. Science 201: 875–880, 1978.

    Article  PubMed  CAS  Google Scholar 

  12. Halliwell B.: Free radicals, oxygen toxicity and aging. In: Sohal R.S. (Ed.), Age Pigments. Elsevier/North Holland, Amsterdam, 1981, pp. 1–61.

    Google Scholar 

  13. Halliwell B., Gutteridge J.M.C.: Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219: 1–14, 1984.

    PubMed  CAS  Google Scholar 

  14. Munday R., Winterbourne C.C.: Reduced glutathione in combination with superoxide dismutase as an important biological antioxidant defense mechanism. Biochem. Pharmacol. 38: 4349–4352, 1989.

    Article  PubMed  CAS  Google Scholar 

  15. Chance B., Sies H., Boveris A.: Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59: 527–603, 1979.

    PubMed  CAS  Google Scholar 

  16. Halliwell B., Gutteridge J.M.C.: Free radicals in biology and medicine, ed. 2, Oxford Univ. Press, 1989.

  17. Foreman H.J., Fisher A.B.: Antioxidant defenses. In: Gilbert D.L. (Ed.), Oxygen and Living Processes. Springer-Verlag, New York, 1981, pp. 235–249.

    Chapter  Google Scholar 

  18. Pryor W.A.: The formation of free radicals and the consequences of their reactions in vivo. Photochem. Photobiol. 28: 787–801, 1978.

    Article  PubMed  CAS  Google Scholar 

  19. Sies H.: Biochemistry of oxidative stress. Angew Chem. Int. Ed. Engl. 25: 1058–1071, 1986.

    Article  Google Scholar 

  20. Sohal R.S.: The rate of living theory: a contemporary interpretation. In: Collatz K.G., Sohal R.S. (Eds.), Insect Aging. Springer-Verlag, Heidelberg, 1986, pp. 23–44.

    Chapter  Google Scholar 

  21. Pearl R.: The rate of living. Knopf, New York, 1928.

    Google Scholar 

  22. Rubner M.: Das Problem der Lebensdauer und seine Beziehunger zum Wachstum und Ernaibrung. Oldenburg, 1908.

  23. Shaw R.F., Bercaw B.L.: Temperature and lifespan in poikilothermus animals. Nature 196: 454–457, 1962.

    Article  PubMed  CAS  Google Scholar 

  24. Arking R., Dudas S.P.: Review of genetic investigations into the aging process of Drosophila. JAGS 37: 757–773, 1989.

    CAS  Google Scholar 

  25. Lints F.A., Le Bourg E., Lints C.V.: Spontaneous locomotor activity and life span. A test of the rate of living theory in Drosophila melanogaster. Gerontology 30: 376–387, 1984.

    CAS  Google Scholar 

  26. Ragland S.S., Sohal R.S.: Mating behavior, physical activity and aging in the housefly, Musca domestica. Exp. Gerontol. 8: 135–145, 1973.

    Article  PubMed  CAS  Google Scholar 

  27. Rockstein M., Chesky J.A., Levy M.H., Yore L.: Effect of population density upon life expectancy and wing retention in the common housefly, Musca domestica L. Gerontology 27: 13–19, 1981.

    Article  PubMed  CAS  Google Scholar 

  28. Maynard-Smith J.: Temperature and the rate of aging in poikilotherms. Nature 199: 400–402, 1963.

    Article  Google Scholar 

  29. Clarke J.M., Maynard Smith J.: Two phases of aging in Drosophila subobscura. J. Exp. Biol. 38: 679–684, 1961.

    Google Scholar 

  30. Ragland S.S., Sohal R.S.: Ambient temperature, physical activity and aging in the housefly, Musca domestica. Exp. Gerontol. 10: 279–289, 1975.

    Article  PubMed  CAS  Google Scholar 

  31. Loschen G., Flohe L., Chance B.: Respiratory chain linked H2O2 production in pigeon heart mitochondria. FEES Lett. 18: 261–264, 1971.

    Article  CAS  Google Scholar 

  32. Halliwell B., Gutteridge J.M.C.: Role of free radicals and catalytic metal ions in human disease: An overview. Meth. Enzymol. 186: 1–85,1990.

    Article  PubMed  CAS  Google Scholar 

  33. Sohal R.S., Donato H., Biehl E.R.: Effect of age and metabolic rate on lipid peroxidation in the housefly, Musca domestica. Mech. Ageing Dev. 16: 159–167, 1981.

    Article  PubMed  CAS  Google Scholar 

  34. Cand F., Verdetti J.: Superoxide dismutase, glutathione peroxidase, catalase and lipid peroxidation in the major organs of the aging rat. Free Radical Biol. Med. 7: 59–63, 1989.

    Article  CAS  Google Scholar 

  35. Farooqui M.Y.H., Day W.W., Zamorano D.M.: Glutathione and lipid peroxidation in the aging rat. Comp. Biochem. Physiol. 88B: 177–180, 1987.

    CAS  Google Scholar 

  36. Jain S. K.: Evidence for membrane lipid peroxidation during the in vivo aging of human erythrocytes. Biochem Biophys. Acta 937: 205–210, 1988.

    Article  PubMed  CAS  Google Scholar 

  37. Salminen A., Saari P., Kihlstrom M.: Age and sex-related differences in lipid peroxidation of mouse cardiac and skeletal muscles. Comp. Biochem. Physiol. 89 B: 695–699, 1988.

    CAS  Google Scholar 

  38. Sawada M., Carlson J.C.: Changes in superoxide radical and lipid peroxide formation in the brain, heart and liver during the lifetime of the rat. Mech. Ageing Dev. 41: 125–137, 1987.

    Article  PubMed  CAS  Google Scholar 

  39. Stege T.E., Mischke B.S., Zipperer W.C.: Levels of lipid peroxidation in hepatocytes isolated from ageing rats fed an antioxidant-free diet. Exp. Gerontol. 17: 273–279, 1982.

    Article  PubMed  CAS  Google Scholar 

  40. Ames B.N.: Endogenous oxidative DNA damage, aging and cancer. Free Rad. Res. Comms. 7:121–128, 1989.

    Article  CAS  Google Scholar 

  41. a) Fraga CG., Shigenaga M.K., Park J.W., Degan P., Ames B.N.: Oxidative damage to DNA during aging: 8-hydroxy-2′-deoxyguanosine in rat organ DNA and urine. Proc. Natl. Acad. Sci. USA 87: 4533–4537, 1990. b) Clark A.M., Rubin M.A. The modifications by X-irradiations of the life span of haploids and diploids of the wasp, Hebrobracon sp. Rad. Res. 15: 244-253, 1961.

    Article  PubMed  CAS  Google Scholar 

  42. Tappel A.L.: Measurement of and protection from in vivo lipid peroxidation. In: Pryor W.A. (Ed.), Free Radicals in Biology, Vol. 4. Academic Press, 1980, pp. 1-47.

  43. Wendel A., Dumelin E.E.: Hydrocarbon exhalation. Meth. Enzymol. 77:10–15, 1981.

    Article  PubMed  CAS  Google Scholar 

  44. Sagai M., Ishinose T.: Age-related changes in lipid peroxidation as measured by ethane, ethylene, butane and pentane in respired gases of rats. Life Sci. 27: 731–738, 1980.

    Article  PubMed  CAS  Google Scholar 

  45. Sohal R.S., Muller A., Koletzko B., Sies H.: Effect of age and ambient temperature on n-pentane production in adult housefly, Musca domestica. Mech. Ageing Dev. 29: 317–326, 1985.

    Article  PubMed  CAS  Google Scholar 

  46. Vorbeck M.L., Martin A.P., Long J.W., Smith J.M., Orr R.R.: Aging-dependent modification of lipid composition and lipid structural order parameter of hepatic mitochondria. Arch. Biochem. Biophys. 217: 351–361, 1982.

    Article  PubMed  CAS  Google Scholar 

  47. Bridges R.G., Sohal R.S.: Relationship between age-associated fluorescence and linoleic acid in the housefly, Musca domestica. Insect. Biochem. 10: 557–562, 1980.

    Article  CAS  Google Scholar 

  48. Harman D.: Free radical theory of aging: Effects of free radical reaction inhibitors on the mortality rate of male LAF1 mice. J. Gerontol. 23: 476–482, 1968.

    Article  PubMed  CAS  Google Scholar 

  49. Hochschild R.: Effect of membrane stabilizing drugs on mortality in Drosophila melanogaster. Exp. Gerontol. 6: 133–151, 1971.

    Article  PubMed  CAS  Google Scholar 

  50. Sharma S.P., Wadhwa R.: Effect of butylated hydroxytoluene on the life span of Drosophila bipectinata. Mech. Ageing Dev. 23: 67–71, 1983.

    Article  PubMed  CAS  Google Scholar 

  51. Kohn R.R.: Effect of antioxidants on life span of C57BL mice. J. Gerontol. 26: 378–380, 1971.

    Article  PubMed  CAS  Google Scholar 

  52. Sohal R.S., Allen R.G., Farmer K.J., Newton R.K., Toy P.L.: Effects of exogenous antioxidants on the levels of endogenous antioxidants, lipid-soluble fluorescent material and life span in the housefly, Musca domestica. Mech. Ageing Dev. 61: 329–336, 1991.

    Article  Google Scholar 

  53. Phillips J.P., Campbell S.D., Michaud D., Charbonneau M., Hilliker A.: Null mutation of copper/zinc superoxide dismutase in Drosophila confers hypersensitivity to paraquat and reduced longevity. Proc. Natl. Acad. Sci. USA 86: 2761–2765, 1989.

    Article  PubMed  CAS  Google Scholar 

  54. Orr W.C, Arnold L.A., Sohal R.S.: Relationship between catalase activity, life span and some parameters associated with antioxidant defenses in Drosophila melanogaster. Mech. Ageing Dev. 63: 287–296, 1992.

    Article  PubMed  CAS  Google Scholar 

  55. MacKay W.J., Bewley G.C.: The genetics of catalase in Drosophila melanogaster: Isolation and characterization of acatalasemic mutants. Genetics 122: 643–652, 1989.

    PubMed  CAS  Google Scholar 

  56. Seto N.O.L., Hayashi S., Tener G.M.: Overexpression of Cu-Zn superoxide dismutase in Drosophila does not affect life span. Proc. Natl. Acad. Sci. USA 87: 4270–4274, 1990.

    Article  PubMed  CAS  Google Scholar 

  57. Orr W.C., Sohal R.S.: The effects of catalase gene overexpression on life span and resistance to oxidative stress in transgenic Drosophila melanogaster. Arch. Biochem. Biophys. 297: 35–41, 1992.

    Article  PubMed  CAS  Google Scholar 

  58. Reveillaud I., Niedzweicki A., Bensch K.G., Fleming J.E.: Expression of bovine superoxide dismutase in Drosophila melanogaster augments resistance to oxidative stress. Mol. Cell Biol. 11: 632–640, 1991.

    PubMed  CAS  Google Scholar 

  59. Sohal R.S., Arnold L., Orr W.C: Effect of age on superoxide dismutase, inorganic peroxides, TBA-reactive material, GSH/GSSG NADPH/NADP+ and NADH/NAD+ in Drosophila melanogaster. Mech. Ageing Dev. 56: 223–235, 1990.

    Article  PubMed  CAS  Google Scholar 

  60. Sohal R.S., Arnold L.A., Sohal B.H.: Age-related changes in antioxidant enzymes and prooxidant generation in tissues of the rat with special reference to parameters in two insect species. Free Radical Biol. Med. 10: 495–500, 1990.

    Article  Google Scholar 

  61. Kellogg III E.W., Fridovich I: Superoxide dismutase in the rat and mouse as a function of age and longevity. J. Gerontol. 31: 405–408, 1976.

    Article  PubMed  CAS  Google Scholar 

  62. Rao G., Xia E., Richardson A.: Effect of age on the expression of antioxidant enzymes in male Fisher F34 rats. Mech. Ageing Dev. 53: 49–60, 1990.

    Article  PubMed  CAS  Google Scholar 

  63. Ansari K.A., Kaplan E., Shoeman D.: Age-related changes in lipid peroxidation and protective enzymes in the central nervous system. Growth Dev. Ageing 53: 117–121, 1989.

    CAS  Google Scholar 

  64. Benzi G., Marzatico F., Pastoris O., Villa R.F.: Relationship between aging, drug treatment and the cerebral enzymatic antioxidant system. Exp. Gerontol. 24: 137–148, 1989.

    Article  PubMed  CAS  Google Scholar 

  65. Semsei I., Rao G., Richardson A.: Changes in the expression of superoxide dismutase and catalase as a function of age and dietary restriction. Biochem. Biophys. Res. Commun. 164: 620-625.

  66. Tolmasoff J.M., Ono T., Cutler R.G.: Superoxide dismutase: correlation with life span and specific metabolic rate in primate species. Proc. Natl. Acad. Sci. USA 77: 2777–2781, 1980.

    Article  PubMed  CAS  Google Scholar 

  67. Sohal R.S., Sohal B.H., Brunk U.T.: Relationship between antioxidant defenses and longevity in different mammalian species. Mech. Ageing Dev. 53: 217–227, 1990.

    Article  PubMed  CAS  Google Scholar 

  68. Sohal R.S., Svensson I., Sohal B.H., Brunk U.T.: Superoxide anion radical production in different animal species. Mech. Ageing Dev. 49: 129–135, 1989.

    Article  PubMed  CAS  Google Scholar 

  69. Sohal R.S., Svensson I., Brunk U.T.: Hydrogen peroxide production by liver mitochondria in different species. Mech. Ageing Dev. 53: 209–215, 1990.

    Article  PubMed  CAS  Google Scholar 

  70. a) Cutler R.G.: Antioxidants and longevity. In: Armstrong D. (Ed.), Free Radicals in Molecular Biology, Aging and Disease. Raven Press, New York, 1984, pp. 235–266. b) Cutler R.G.: Peroxide-producing potential of tissues: inverse correlation with longevity of mammalian species. Proc. Natl. Acad. Sci. USA 82: 4798-4802, 1985.

    Google Scholar 

  71. Sohal R.S., Allen R.G., Nations C.: Oxidative stress and cellular differentiation. Ann. N.Y. Acad. Sci. 551: 59–74, 1988.

    Article  PubMed  CAS  Google Scholar 

  72. Sohal R.S., Allen R.G.: Oxidative stress as a causal factor in differentiation and aging: a unifying hypothesis. Exp. Gerontol. 25: 499–522, 1990.

    Article  PubMed  CAS  Google Scholar 

  73. Nohl H., Hegner D.: Do mitochondria produce oxygen radicals in vivo? Eur. J. Biochem. 82: 563–567, 1978.

    CAS  Google Scholar 

  74. Muscari C., Frascaro M., Guarnieri C., Calderera C.M.: Mitochondrial function and superoxide generation from submitochondrial particles of aged rat hearts. Biochem. Biophys. Acta. 1015: 200–204, 1990.

    Article  PubMed  CAS  Google Scholar 

  75. Sohal R.S., Sohal B.H.: Hydrogen peroxide release by mitochondria increases during aging. Mech. Ageing Dev. 57:187–202, 1991.

    Article  PubMed  CAS  Google Scholar 

  76. Farmer K.J., Sohal R.S.: Relationship between superoxide anion radical generation and aging in the housefly, Musca domestica. Free Radical Biol. Med. 7: 23–29, 1989.

    Article  CAS  Google Scholar 

  77. Sohal R.S.: Hydrogen peroxide production by mitochondria may be a biomarker of aging. Mech. Ageing Dev. 60: 189–198, 1991.

    Article  PubMed  CAS  Google Scholar 

  78. Stadtman E.R., Oliver C.N.: Metal-catalyzed oxidation of proteins. J. Biol. Chem. 266: 2005–2008, 1991.

    PubMed  CAS  Google Scholar 

  79. Miquel J., Economos A.C., Fleming J., Johnson J.R. Jr.: Mitochondrial role in cell aging. Exp. Gerontol. 15: 575–591, 1980.

    Article  PubMed  CAS  Google Scholar 

  80. Linnane A.W., Ozawa T., Marzuki S., Tanaka M.: Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet I: 642–645, 1989.

    Article  Google Scholar 

  81. Wallace D.C.: Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science 256: 628–632, 1992.

    Article  PubMed  CAS  Google Scholar 

  82. Hansford R.D.: Bioenergetics in aging. Biochem. Biophys. Acta 726: 41–80, 1983.

    Article  PubMed  CAS  Google Scholar 

  83. Allen R.G.: Oxygen-reactive species and antioxidant responses during development: the metabolic paradox of cellular differentiation. Proc. Soc. Exp. Biol. Med. 196: 117–129, 1991.

    Article  PubMed  CAS  Google Scholar 

  84. Cutler R.G.: Recent progress in testing the longevity determinant and dysdifferentiation hypotheses of aging. Arch. Gerontol. Geriatr. 12: 75–98, 1991.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sohal, R.S. The free radical hypothesis of aging: An appraisal of the current status. Aging Clin Exp Res 5, 3–17 (1993). https://doi.org/10.1007/BF03324120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03324120

En]Keywords

Navigation