Skip to main content
Log in

The Congruence of a Matrix with its Transpose

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

A new proof is presented that any bilinear form b(x, y) on a finite-dimensional vector space is equivalent to its transposed form b(y, x), or again that any square matrix over a field is congruent to its transpose. This result is then applied to show that a certain previously studied class of rings possess an antiautomorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. C. Chevalley, The Algebraic Theory of Spinors and Clifford Algebras, Springer-Verlag, Berlin, 1997.

    MATH  Google Scholar 

  2. B. Corbas and G.D. Williams, Rings of order p5. Part I. Nonlocal rings, J. Algebra 231 (2000), 677–690.

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Corbas and G.D. Williams, Rings of order p5. Part II. Local rings, J. Algebra 231 (2000), 691–704.

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Corbas and G.D. Williams, Bilinear forms over an algebraically closed field, J. Pure and Appl. Alg. 165 (2001), 255–266.

    Article  MathSciNet  MATH  Google Scholar 

  5. J.A. Dieudonné, La Géométrie des Groupes Classiques, Springer-Verlag, Berlin, 1971.

    MATH  Google Scholar 

  6. D.Z. Djokovic and K.D. Ikramov, A square matrix is congruent to its transpose, J.Algebra 257 (2002), 97–105.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Gabriel, Degenerate bilinear forms, J.Algebra 31 (1974), 67–72.

    Article  MathSciNet  MATH  Google Scholar 

  8. R.W. Goldbach and H.L. Claasen, Classification of not commutative rings with identity of order dividing p4, Indag. Mathem. N.S. 6(2) (1995), 167–187.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Gow, The equivalence of an invertible matrix to its transpose, Linear and Multilinear Algebra 8 (1980), 329–336.

    Article  MathSciNet  MATH  Google Scholar 

  10. N. Jacobson, Basic Algebra I, Freeman, San Francisco, 1974.

    MATH  Google Scholar 

  11. C. Riehm, The equivalence of bilinear forms, J. Algebra 31 (1974), 45–66.

    Article  MathSciNet  MATH  Google Scholar 

  12. J.J. Rotman, Advanced Modern Algebra, Prentice Hall, New Jersey, 2002.

    MATH  Google Scholar 

  13. R. Scharlau, Zur Klassifikation von Bilinearformen über Körpern, Math. Zeit 178 (1981), 359–373.

    Article  MathSciNet  MATH  Google Scholar 

  14. W. Scharlau, Quadratic and Hermitian Forms, Springer-Verlag, Berlin, 1985.

    Book  MATH  Google Scholar 

  15. W.C. Waterhouse, The number of congruence classes in Mn(Fq), Finite Fields App. 1 (1995), 57–63.

    Article  MathSciNet  MATH  Google Scholar 

  16. G.D. Williams, On a class of finite rings of characteristic p2, Result. Math. 38 (2000), 377–390.

    Article  MATH  Google Scholar 

  17. G.D. Williams, Protective congruence in M3(Fq), Result. Math. 41 (2002), 396–402.

    Article  MATH  Google Scholar 

  18. E.L. Yip and C.S. Ballantine, Congruence and conjunctivity of matrices to their adjoints, Lin. Alg. Appl. 41 (1981), 33–72.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham D. Williams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, G.D. The Congruence of a Matrix with its Transpose. Results. Math. 47, 147–154 (2005). https://doi.org/10.1007/BF03323020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03323020

Math Subject Classification

Keywords

Navigation