Skip to main content
Log in

Piecewise regular spreads

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

A spread \(\cal S\) of the real projective 3-space PG(3,ℝ) is called piecewise regular, if, roughly speaking, the Klein image of \(\cal S\) is composed of two elliptic caps and z elliptic zones (z ∈ {0,1,2,…}); we say that \(\cal S\) is of segment number z + 2. We use piecewise regular spreads in order to give explicit examples of rigid and hyperrigid spreads. A spread \(\cal T\) of a projective 3-space II is called rigid, if the only collineation of II leaving \(\cal T\) invariant is the identity. A rigid spread ℌ is said to be hyperrigid, if there is no duality of II leaving ℌ invariant. We exhibit a 3-parameter family S″ of rigid piecewise regular spreads of segment number 4 and show that S″ contains spreads which represent non-isomorphic rigid 4-dimensional translation planes. Finally, we construct a 7-parameter family H of explicit examples of hyperrigid piecewise regular spreads of segment number 5. In H there are at least four spreads which represent mutually non-isomorphic rigid 4-dimensional translation planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Betten. 4-dimensionale Translationsebenen. Math. Z., 128, pp. 129–151, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Betten. 4-dimensionale Translationsebenen mit kommutativer Standgruppe. Math. Z., 154, pp. 125–141, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Biliotti and N. L. Johnson. Variations on a theme of Dembowski. In: N.-L. Johnson (ed.) Mostly finite geometries, Proceedings of the TEDFEST ’96 conference, Iowa City, USA, March 1996. New York, Marcel Dekker. Lect. Notes Pure Appl. Math. 190, 139-168, 1997.

  4. M. Biliotti and N. L. Johnson. Bilinear flocks of quadratic cones. J. Geom. 64, No. 1–2, pp. 16–50, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  5. O. Giering. Vorlesungen über höhere Geometrie. Vieweg, Braunschweig, Wiesbaden, 1982.

    Book  MATH  Google Scholar 

  6. J. W. P. Hirschfeld. Finite projective spaces of three dimensions. Clarendon Press, Oxford, 1985.

    MATH  Google Scholar 

  7. J.W.P. Hirschfeld and J.A. Thas. General Galois Geometries. Clarendon Press, Oxford, 1991.

  8. G. Pickert. Analytische Geometrie. Akad. Verlagsges. Geest & Portig, 7. Aufl., Leipzig, 1976.

  9. R. Riesinger. Beispiele starrer, topologischer Faserungen des reellen projektiven 3-Raums. Geom. Dedicata, 40, pp. 145–163, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Riesinger. Spreads admitting net generating regulizations. Geom. Dedicata, 62, pp.139–155, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Riesinger. Extending the Thas-Walker construction. Bull. Belg. Math. Soc., Simon Stevin, 6, pp.237–247, 1999.

    MathSciNet  MATH  Google Scholar 

  12. R. Riesinger. A class of topological spreads with unisymplecticly complemented regulization. Result. Math. 38, pp.307–338, 2000.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Also the notations “classical spread”, “elliptic linear congruence of lines” and “elliptic net (of lines)” are in use.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riesinger, R. Piecewise regular spreads. Results. Math. 45, 153–168 (2004). https://doi.org/10.1007/BF03323004

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03323004

AMS Subject Classification

Keywords

Navigation