Skip to main content
Log in

q—Type Sampling Theorems

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

This paper introduces q—versions of the classical sampling theorem of Whittaker, Kotel’nikov and Shannon as well as Kramer’s analytic theorem. q—type band-limited signals are defined in terms of Jackson’s q—integral and their sampling representations are given. The sampling points are the zeros of a q—sine type function, derived by Bustoz and Cardoso (2001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Aberu, J. Bustoz, J.L. Cardoso, The roots of the third Jackson q—Bessel function, submitted.

  2. M.H. Abu Risha, M.H. Annaby, M.E.H. Ismail and Z.S. Mansour, q—difference equations I: Existence and uniqueness theorems, in preparation.

  3. M.H. Annaby, J. Bustoz and M.E.H. Ismail, q Sturm-Liouville problems and associated sampling expansions, in preparation.

  4. M.H. Annaby and P.L. Butzer, On sampling associated with singular Sturm-Liouville eigenvalue problems: the limit circle case, Rocky Mountain J. Math. 32 (2002), 443–466.

    Article  MathSciNet  MATH  Google Scholar 

  5. M.H. Annaby, On sampling theory associated with the resolvents of singular Sturm-Liouville problems, Proc. Amer. Math. Soc. 131 (2003), 1803–1812.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Boas, Entire Functions, Academic Press, New York, 1954.

    MATH  Google Scholar 

  7. J. Bustoz and J.L. Cardoso, Basic analog of Fourier series on a q—linear grid, J. Approx. Theory 112 (2001), 134–157.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Bustoz and J.L. Cardoso, Erratum: “Basic analog of Fourier series on a q-linear grid” J. Approx. Theory 112 (2001), 134–157, by Bustoz and J. L. Cardoso, J. Approx. Theory 113 (2001), p. 326.

    Article  MathSciNet  MATH  Google Scholar 

  9. P.L. Butzer, J.R. Higgins and R.L. Stens, Sampling theory of signal analysis. In: Development of Mathematics 1950–2000, pp. 193–234, Birkhäuser, Basel, 2000.

  10. P.L. Butzer and G. Schöttler, Sampling theorems associated with fourth and higher order self-adjoint eigenvalue problems, J. Comput. Appl. Math. 51 (1994), 159–177.

    Article  MathSciNet  MATH  Google Scholar 

  11. P.L. Butzer and G. Nasri-Roudsari, Kramer’s sampling theorem in signal analysis and its role in Mathematics, in: J.M. Blackledge (Ed), Image Processing, Mathematical Methods and Applications, The Institute of Mathematics and its Applications, New Series, Clarendon Press, Oxford, 61, 1997, pp. 49–95.

    Google Scholar 

  12. W.N. Everitt, G. Schöttler and P. L. Butzer, Sturm-Liouville boundary value problems and Lagrange interpolation series, Rendiconti di Matematica, Roma (7) 14 (1994), 87–126.

    MATH  Google Scholar 

  13. W.N. Everitt and G. Nasri-Roudsari, Interpolation and sampling theories, and linear ordinary boundary value problems. In: Sampling theory in Fourier and signal analysis; advanced topics. Pages 96–129 (Oxford University Press; Science Publications: 1999: edited by J.R. Higgins and R.L.Stens).

  14. W.N. Everitt, W.K. Hayman and G. Nasri-Roudsari, On the representation of holomorphic functions by integrals, Appl. Anal. 65 (1997), 95–102

    Article  MathSciNet  MATH  Google Scholar 

  15. W.N. Everitt, G. Nasri-Roudsari and J. Rehberg, A note on the analytic form of the Kramer sampling theorem, Results in Math. 34 (1998), 310–319.

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Gaspar and M. Rahman, Basic hypergeometric Series, Cambridge University Press, Cambridge, 1990.

    Google Scholar 

  17. J.R. Higgins, Sampling Theory in Fourier and Signal Analysis: Foundations, Oxford University Press, Oxford, 1996.

    MATH  Google Scholar 

  18. M.E.H. Ismail, The basic Bessel functions and polynomials, SIAM J. Math. Anal., 12 (1981), 454–468.

    Article  MathSciNet  MATH  Google Scholar 

  19. M.E.H. Ismail, The zeros of basic Bessel functions, the functions Jυ+ax(x), and associated orthogonal polynomials J. Math. Anal. Appl., 86 (1982), 1–19.

    Article  MathSciNet  MATH  Google Scholar 

  20. F.H. Jackson,On a q—definite integrals, quart. J. Pure Appl. Math. 47, (1910), 193–203.

    Google Scholar 

  21. H.P. Kramer, A generalized sampling theorem, J. Math. Phys. 38 (1959), 68–72.

    MATH  Google Scholar 

  22. H.T. Koelinek and R.F. Swarttouw, On the zeros of the Hhan Exton q—Bessel functions and q—Lommel polynomials, J. Math. Anal. Appl. 18, (1994), 690–710.

    Article  Google Scholar 

  23. T.H. Koornwinder and R.F. Swarttouw, On q-analogues of the Fourier and Hankel transforms, Trans. Amer. Math. Soc. 333 (1992), 445–461.

    MathSciNet  MATH  Google Scholar 

  24. R.F. Swarttouw, The Hahn-Exton q—Bessel Functions, Ph.D. thesis, The technical University of delft, Delft, 1992.

  25. A.L. Zayed, Advances in Shannon’s Sampling Theory, CRC Press, Boca Raton, 1993.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud H. Annaby.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Annaby, M.H. q—Type Sampling Theorems. Results. Math. 44, 214–225 (2003). https://doi.org/10.1007/BF03322983

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322983

AMS Subject Classification

Keywords

Navigation