Abstract
In the paper we propose a modification of the classical construction of the (Minkowskian) incidence structures based on permutation groups. Dropping out explicit assumptions concerning rigidity and transitivity (and assuming an arbitrary finite ”dimension”) we obtain a wider class of structures. Their geometrical properties are studied; in particular, we establish their automorphism groups and discuss some problems related to axiomatic characterization.
This is a preview of subscription content, access via your institution.
References
J. Andre, On non-commutative geometry, Ann. Univ. Sarav. Ser. Math. (1993), no. 2, 93-129
W. Benz, Permutations and plane sections of a ruled Quadric, Symposia Mathematica, Instituto Nazionale di Alta Matematica, vol. V (1970), 325–339
W. Benz, Vorlesungen über Geometrie der Algebren, Springer V. 1973
A. Herzer, Die Kategorien der Kettengeometrien, Results Math. 12 (1987), 278–288
A. Herzer, Chain Geometries, in: Handbook of Incidence Geometries, ed. by F. Buekenhout, Elsevier 1995, 781-842
H. Karzel, Bericht über projektive Inzidenzgruppen, Jber. Deutsch. Math.-Verein. 67 (1964/65) Abt. 1, 58–92
H. Karzel, Zusammenhänge zwischen Fastbereichen, scharf zweifach transitiven Permutationsgruppen und 2-Struktruren mit Rechtecksaxiom, Abh. Math. Sem. Univ. Hamb. 32 (1968), 191–206
H. Karzel, Symmetrische Permutationsmengen, Aequationes Math. 17 (1978), 83–90
W. Kerby, H. Wefelscheid, Über eine scharf 3-fach transitiven Gruppen zugeordnete algebraische Struktur, Abh. Math. Sem. Univ. Hamburg 37 (1972), 225–235
R. Lingenberg, Metric planes and metric vector spaces, John Wiley & Sons, New York, Chichester, Brisbane, Toronto 1979
C. Luksch, Die Automorphismengruppe der Polynomgeometrie vom Grad n, Mitt. Math. Sem. Giessen 181 (1987), 1–56
I. R. Porteous, Topological geometry, Cambridge University Press, Cambridge, 1981
K. Prażmowski, Projections of cylinders and generalization of the parabeln model of affine geometry, Dem. Math. 37 (2004), 177–189
K. Prażmowski, M. Żynel, Geometry of the structure of linear complements, J. Geom. 79 (2004), 177–189
H.-J. Samaga, (Bn*GnSn)-Geometrien, J. Geom. vol 12/1 (1979), 69–87
H. Wähling, Theorie der Fastkörper, Thales Verlag 1987
H. Wefelscheid, Über die Automorphismengruppen von Hyperbelstrukturen, Beiträge zur geometrischen Algebra (Proc. Sympos., Duisburg, 1976), Birkhäuser, Basel, 1977, 337–343
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Matraś, A., Mierzejewska, A. & Prazmowski, K. Some chain geometries determined by transformation groups. Results. Math. 46, 251–270 (2004). https://doi.org/10.1007/BF03322886
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF03322886