Skip to main content
Log in

Spaces of Riemannian metrics on open manifolds

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

We define for the set M of metrics on an open manifold M n suitable uniform structures, obtain completed spaces b,m M or M r(I, B k ), respectively and calculate for each component of M r(I, B k ) the infinitedimensional geometry. In particular, we show that the sectional curvature is non positive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bourguignon, J.P. Une stratification de l’espace des structures Riemanniennes. Comp. Math. 30 (1975), 1–41

    MathSciNet  MATH  Google Scholar 

  2. Ebin, D. The space of Riemannian metrics. Proc. Symp. Pure Math. XV (1970), 11–40

    Article  MathSciNet  Google Scholar 

  3. Eichhorn, J. The manifold structure of maps between open manifolds. Annals of Global Analysis and Geometry 3 (1993), 253–300

    MathSciNet  Google Scholar 

  4. Eichhorn, J. The Euler characteristic and signature for open manifolds. Suppl. ai Rendiconti del Circolo Mathematico di Palermo Ser. II no. 16 (1987), 29–41

    MathSciNet  Google Scholar 

  5. Eichhorn, J. Tie Banach manifold structure of the space of metrics on noncompact manifolds. Diff. Geom. and its Appl. 1 (1991), 89–108

    Article  MathSciNet  MATH  Google Scholar 

  6. Eichhorn, J. Elliptic differential operators on noncompact manifolds. Teubner Texte zur Mathematik vol. 106 (1988), 4–169

    MathSciNet  Google Scholar 

  7. Eichhorn, J. A priori estimates in geometry and Sobolev spaces on open manifolds. Banach Center Publications 27 (1992), 141–146

    MathSciNet  Google Scholar 

  8. Eichhorn, J. Gauge theory on open manifolds of bounded geometry. International Journ. of Modern Physics 7 (1992), 3927–3977

    Article  MathSciNet  Google Scholar 

  9. Eichhorn, J. The boundedness of connection coefficients and their derivatives. Math. Nachr. 152 (1991), 145–158

    Article  MathSciNet  MATH  Google Scholar 

  10. Freed, D.S., Groisser, D. The basic geometry of the manifold of Riemannian metrics and of its quotient by the diffeomorphism group. Michigan Math. J. 36 (1989), 323–344

    Article  MathSciNet  MATH  Google Scholar 

  11. Fricke, J. Diplomarbeit. Greifswald 1994

  12. Greene, B. Complete metrics of bounded curvature on noncompact manifolds. Arch. Math. 31 (1978), 89–95

    Article  MathSciNet  MATH  Google Scholar 

  13. Hildebrandt, S., Kaul, H., Widman, K.O. An existence theorem for harmonic mappings of Riemannian manifolds. Acta Math. 138 (1976), 1–16

    Article  MathSciNet  Google Scholar 

  14. Michor, P., Gil-Medrano, O. The Riemannian manifold of all Riemannian metrics. Quart. J. Math. Oxford Ser. (2) 42 (1991), 183–202

    Article  MathSciNet  MATH  Google Scholar 

  15. Schubert, H. Topologie. Stuttgart 1966

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Katsurni Nomizu on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eichhorn, J. Spaces of Riemannian metrics on open manifolds. Results. Math. 27, 256–283 (1995). https://doi.org/10.1007/BF03322831

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322831

AMS classification

Keywords

Navigation