Skip to main content

Analytically Continued Hypergeometric Expression of the Incomplete Beta Function

abstract

The Incomplete Beta Function is rewritten as a Hypergeometric Function that is the analytic continuation of the conventional form, a generalization of the finite series, which simpifies the Stieltjes transform of powers of a monomial divided by powers of a binomial.

This is a preview of subscription content, access via your institution.

References

  1. A.P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, Integrals and Series (Gorden and Breach, New York, 1990) v3, p. 466, No. 7.3.1.177.

    MATH  Google Scholar 

  2. Handbook of mathematical functions with formulas, graphs, and mathematical tables, ed M. Abramowitz and I. A. Stegun(National Bureau of Standards, Applied mathematics series, 55, Washington, 1970), p. 263, Nos. 6.6.8, 6.6.2, and 6.6.3; see also K. Pearson, Biometrika 16, 202 (1924); M. J. Tretter and G. W. Walster, SIAM J. Sci. Stat. Comput. 1, 321 (1980); N. M. Temme, SIAM J. Math Anal. 18, 1638 (1987); B. W. Brown and L. B. Levy, ACM Trans. Math. Software 20, 393 (1994); and B. G. S. Doman, Math. Comput. 65, 1283 (1996).

  3. Larry C. Andrews, Special Functions for Engineers and Applied Mathematics, (MacMillan, New York, 1985) p. 70.

    Google Scholar 

  4. I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1980), p. 950, No. 8.391.

    MATH  Google Scholar 

  5. I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1980), p. 1043, No. 9.132.2.

    MATH  Google Scholar 

  6. I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1980), p. 1043, No. 9.131c.

    MATH  Google Scholar 

  7. I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1980), p. 937, No. 8334.3.

    MATH  Google Scholar 

  8. I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1980), p. 1043, No. 9.131b.

    MATH  Google Scholar 

  9. I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products (Academic, New York, 1980), p. 290, No. 3.227.2; A. Erdélyi et al., Tables of Integral Transforms, Vol. II (McGraw Hill, New York, 1954), p. 217, No. 10.

    MATH  Google Scholar 

  10. See, for instance, D. B. Sumner, Bull. Am. Math. Soc. 55, 174 (1949); A. Byrne and E. R. Love J. Austral. Math. Soc. 18, 328 (1974) and J. Math. Anal. & Appl. 190, 428 (1995).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Straton, J.C. Analytically Continued Hypergeometric Expression of the Incomplete Beta Function. Results. Math. 41, 394–395 (2002). https://doi.org/10.1007/BF03322781

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322781

1991 Mathematics Subject Classification

  • 33B20
  • 33C05
  • 44A15

Key Words

  • Incomplete beta function
  • hypergeometric function
  • Stieltjes transforms
  • definite integrals