Skip to main content
Log in

A Class of Conformally flat Contact Metric 3-Manifolds

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

It is shown that a conformally flat contact metric 3-manifold with Ricci curvature vanishing along the characteristic vector field, has non-positive scalar curvature. Such a manifold is flat if (i) it is compact, or (ii) the scalar curvature is constant, or (iii) the norm of the Ricci tensor is constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Bang, Riemannian geometry of vector bundles, Thesis, Michigan State University, 1994.

  2. D.E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509, Springer Verlag, Berlin, 1976.

    MATH  Google Scholar 

  3. D.E. Blair, On the non-existence of flat contact metric structures, Tohoku Math. J. 28(1976), 373–379.

    Article  MathSciNet  MATH  Google Scholar 

  4. D.E. Blair and T. Koufogiorgos, When is the tangent sphere bundle conformally flat? J. Geom. 49(1994), 55–66.

    Article  MathSciNet  MATH  Google Scholar 

  5. D.E. Blair and R. Sharma, Three dimensional locally symmetric contact metric manifolds, Boll. Un. Mat. Ital. (7), 4-A(1990), 385–390.

    Google Scholar 

  6. J.P. Bourguignon, Harmonic curvature for gravitational and Yang-Mills fields, Lecture Notes in Math., 949, Springer Verlag, Berlin, 1982.

    Google Scholar 

  7. G. Calvaruso, D. Perrone and L. Vanhecke, Homogeneity on three-dimensional contact metric manifolds, Israel J. Math. 114 (1999), 301–321.

    Article  MathSciNet  MATH  Google Scholar 

  8. Q. Cheng, S. Ishikawa and K. Shiohama, Conformally flat 3-manifolds with constant scalar curvature, J. Math. Soc. Japan 51(1999), 209–226.

    Article  MathSciNet  MATH  Google Scholar 

  9. L.P. Eisenhart, Symmetric tensors of the second order whose covariant derivatives vanish, Annals of Maths. 27(1926), 91–98.

    Google Scholar 

  10. A. Ghosh, T. Koufogiorgos and R. Sharma, Conformally flat contact metric manifolds, J. Geom. 70(2001), 66–76.

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Gouli-Andreou and P.J. Xenos, Two classes of conformally flat contact metric manifolds, J. Geom. 64(1999), 80–88.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Okumura, Some remarks on spaces with certain contact structures, Tohoku Math. J. 14(1962), 135–145.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Rukimbira, A characterization of flat contact metric geometry, Houston J. Math. 24(1998), 409–414.

    MathSciNet  MATH  Google Scholar 

  14. S. Tanno, Locally symmetric K-contact Riemannian manifolds, Proc. Japan Acad. 43(1967), 581–583.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to the memory of Professor S. Tanno

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gouli-Andreou, F., Sharma, R. A Class of Conformally flat Contact Metric 3-Manifolds. Results. Math. 43, 114–120 (2003). https://doi.org/10.1007/BF03322727

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322727

Math. Subject Classification

Keywords

Navigation