Skip to main content
Log in

Peut-on définir la géométrie aujourd’hui?

  • Published:
Results in Mathematics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliography

  • Alon, N., Bourgain, L, Connes, A., Gromov, M., Milman, V. (2000). Visions in mathematics II, Birkhäuser.

  • Arnold, V. (1983). Singularities of systems of rays. Russian mathematica, 38-2, 83-176.

  • Arnold, V. (1994). Plane curves, their invariants, perestroikas and classifications. Advances in Soviet math., 21, 33–91.

    Google Scholar 

  • Arnold, V. (1995). Les mathématiques vont-elles survivre? Gazette de la SMF, 3-10.

  • Arnold, V. (1999). Symplectization, complexification and mathematical trinities. In K. Bierstone, Khovanskii, Marsden (Eds.), The Arnoldfest (pp. 23-38). AMS.

  • Arnold, V. (2000). Polymathematics: Is mathematics a single science or a set of arts ? In A. Arnold, Lax, Mazur (Eds.), Mathematics: frontiers and perspectives (pp. 403-416). AMS.

  • Berger, M. (1999). Riemannian geometry during the second half of the century (updated and indexed version of Berger 1998a). Americ. Math. Soc.

  • Blamont, J. Le chiffre et le songe. Odile Jacob.

  • Bourbaki, N. (1962). L’architecture des mathématiques. In Les grands courants de la pensée mathématique Blanchard, Paris.

  • Bourguignon, J.-P. (1993). Eugenio Calabi and Kähler metrics. In P. de Bartolomeis, F. Tricerri & E. Vesentini (Ed.), Manifolds and geometry, (pp. 61–85). Pisa: Cambridge University Press.

    Google Scholar 

  • Braunmühl, A. v. (1882). Geodätische Linien und ihre Enveloppen auf dreiaxigen Flächen zweiten Grades. Math. Annalen, 557-586.

  • Bridson, M. & Haefliger, A. (1998). Metric spaces of non-positive curvature. Springer.

  • Burago, Y., Gromov, M. & Perelman, G. (1992). Alexandrov’s spaces with curvatures bounded from below I. Russian mathematical surveys, 47, 1–58.

    Article  MathSciNet  MATH  Google Scholar 

  • Butterworth, B. (1999). What counts: how every brain is hardwired for math. The Free Press, New York.

    MATH  Google Scholar 

  • Changeux, J.-P. (1994). Raison et plaisir. Odile Jacob.

  • Changeux, J.-P. &; Connes, A. (1989). Matière à pensée. Odile Jacob.

  • Chevalley, C. (1951). Algebraic functions of one variable. American Math. Soc.

  • Chou, S.-C, Gao, X.-S. & Zhang, J.-Z. (1994). Machine proofs in geometry. World Scientific.

  • Cohen, M. (2000). Review of “What is mathematics, really” by Reuben Hersh. The Math. Intelligencer, 22, 70–72.

    Article  Google Scholar 

  • Connes, A. (1994). Noncommutative geometry. Academic Press.

  • Connes, A. (2000). Triangle de pensées. Odile Jacob.

  • Courant, R. & Robbins, H. (1941). What is mathematics ? Oxford U. Press.

  • Crapo, H. & Richter-Gebert, J. (1995). Automatic proving of geometric theorems.

  • Darboux, G. (1900). Esprit de géométrie et esprit de finesse. La revue scientifique, 7 juillet, 17-19.

  • David, G. & Semmes, S. (1997). Fractured fractals and broken dreams. Clarendon Press.

  • Davis, P. & Hersch, R. (1982). L’univers mathématique. Gauthier-Villars.

  • Dehaene, S. (1997). The number sense: how the mind creates mathematics. Oxford U. Press.

  • Dewdney, A. (1999). A mathematical mystery tour: discovering the truth and the beauty of the cosmos. John Wiley.

  • Dieudonné, J. (1981). Domination universelle de la Géométrie, non publié.

  • Dieudonné, J. (1982). Mathématiques vides et mathématiques significatives, dans Penser les mathématiques. Seuil.

  • Dombrowski, P. (1979). 150 years after Gauss. Société mathématique de France.

  • Falconer, K. (1990). Fractal geometry. John Wiley.

  • Griffiths, P. (1993). Speech for the opening of the new Princeton IAS building. Notices of the AMS, 40, 600.

  • Gromov, M. (1978a). Manifolds of negative curvature. J. of differential geometry, 13, 223–230.

    MathSciNet  MATH  Google Scholar 

  • Gromov, M. (1978b). Homotopical effects of dilatation. J. of differential geometry, 13, 303–310.

    MathSciNet  MATH  Google Scholar 

  • Gromov, M. (1981). Speech after receiving the Veblen prize. Notices of the AMS, 28, 160–161.

    Google Scholar 

  • Gromov, M. (1983). Filling Riemannian manifolds. J. of Diff. Geometry, 18, 1–147.

    MathSciNet  MATH  Google Scholar 

  • Gromov, M. (1986). Partial Differential Relations. Springer.

  • Gromov, M. (1993). Asymptotic invariants of infinite groups. In G. Noble & M. Roller (Eds.), Geometric group theory (pp. 75-263). London Math. Soc.

  • Gromov, M. (1994). Carnot-Caratheodory spaces seen from within. In A. Bellaïche & J.-J. Risler (Eds.), Sub-Riemannian geometry, Birkhäuser.

  • Gromov, M. (1996). Positive curvature, macroscopic dimension, spectral gaps and higher signatures. In S. Gindikin, J. Lepowski & R. Wilson (Eds.), Functional analysis in the eve of the 21st century (pp. 1-213). Birkhäuser.

  • Gromov, M. (1997). réponse lors de la réception du prix Steele de l’AMS. Notices of the AMS, 44, 344.

    MathSciNet  Google Scholar 

  • Gromov, M. (1998). Possible trends in mathematics in the coming decades. Notices of the American math. Soc, 45, 846–847.

    MathSciNet  Google Scholar 

  • Gromov, M. (1999a). Metric structures for Riemannian and non- Riemannian manifolds, edited by J. Lafontaine et P. Pansu. Birkhäuser.

  • Gromov, M. (1999b). Local and global in geometry.

  • Gromov, M. (2000). Spaces and questions (pages 118 - 181 de Alon, N., Bourgain, S., Connes, A., Gromov, M., Milman, V., Visions in Mathematics I, Birkhäuser 2000).

  • Gromov, M.& Langevin, R. (2000). Entrevue avec M. Gromov, en Appendice dans Development of mathematics 1950 - 2000, edited by Pier, Birkhäuser 2000.

  • Gruber, P. (1991). A typical convex surface contains no closed geodesic! J. reine und angew. Math., 416, 195–205.

    MATH  Google Scholar 

  • Grünbaum, B. & Shephard, G. (1987). Tilings and patterns. Interscience.

  • Hersh, R. (1997). What is mathematics, really? Oxford U. Press.

  • Hilbert, D. (1974). Mathematical developments arising from Hilbert problems. In F. B. Rowder (Ed.), XXVIII. American Math. Soc.

  • Hilbert, D. & Cohn-Vossen, S. (1952). Geometry and the imagination. Chelsea.

  • Hilbert, D. & Cohn-Vossen, S. (1996). Anschauliche Geometrie. Springer.

  • Hrasko, A. (1999). Letters from the Reader. The Math. Intelligencer, 21(3), 50.

    Google Scholar 

  • Itenberg, I. & Viro, O. (1996). Patchworking Algebraic Curves Disproves the Ragsdale Conjecture. The Mathematical Intelligencer, 18, 19–28.

    Article  MathSciNet  MATH  Google Scholar 

  • Jaffe, A. & Quinn, F. (1993). “Theoretical mathematics”: toward a cultural synthesis of mathematics and theoretical physics. Bulletin of the AMS, 29, 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  • Kharlamov, V. (2000). Variétés de Fano réelles (d’après C. Viterbo). Astérisque, Séminaire Bourbaki, mars 2000).

  • Lang, S. (1983). Fundamentals of diophantine geometry. Springer.

  • Lang, S. (1999). Fundamentals of differential geometry. Springer.

  • Lebesgue, H. (1950). Leçons sur les constructions géométriques. Gauthier-Villars, réédité par Jacques Gabay en 1987.

  • Meier-Rust, K. (1999). Das Genie, das aus Leningrad kam. Die Weltwoche(Nr. 52, 30 Dezember), 54.

  • Nabutovsky, A. (1996). Fundamental group and contractible closed geodesics. Communications in pure and appl. math., 49, 1257–1270.

    Article  MathSciNet  MATH  Google Scholar 

  • Nabutovsky, A. &; Weinberger, S. (1998). Variational problems for Riemannian functionals and arithmetic groups.

  • Pach, J. & Agarwal, P. (1995). Combinatorial geometry. Wiley.

  • Penrose, R. (1989). The Emperor’s new mind. Oxford U. Press.

  • Penrose, R. (1997). Remarks on tiling. In R. Moody (Eds.), The mathematics of the long-range aperiodic order (pp. 495). Kluwer.

  • Petersen, P. (1999). Aspects of global Riemannian geometry. Bulletin of the AMS, 36, 296–344.

    Article  Google Scholar 

  • Porteous, I. (1994). Geometric differentiation (for the intelligence of curves and surfaces). Cambridge University Press.

  • Radin, C. (1994). The pinwheel tiling of the plane. Annals of Math. 139, 661–702.

    Article  MathSciNet  MATH  Google Scholar 

  • Redei, M. (1999). “Unsolved problems in mathematics”: J. von Neumann’s address to the international congress of mathematicians, Amsterdam 1954. Math. Intelligencer, 21-4, 7-12.

  • Richter-Gebert, J. (1996). Realization spaces of polytopes. Springer.

  • Ronga, F., Tognoli, A. & Vust, T. (1997). The number of conies tangent to five given conies: the real case. Revista matematica, 10, 391–421.

    MathSciNet  MATH  Google Scholar 

  • Saff, E.& Kuijlaars, A. (1997). Distributing many points on a sphere. Math. Intelligencer, 19, 5–11.

    Article  MathSciNet  MATH  Google Scholar 

  • Sarnak, P. (1990). Some applications of modular forms. Cambridge University Press.

  • Schwartz, R. (1993). Pappus’s theorem and the modular group. Public, math. I H E S, 78.

  • Senechal, M. (1995). Quasicrystals and geometry. Cambridge University press.

  • Smale, S. (1998). Mathematical problems for the next century. The math. Intelligencer, 20-2, 7-15.

  • Spring, D. (1998). Convex integration theory (solutions to the h-principle in geometry and topology). Birkhäuser.

  • Steen, L. (2000). A mathematical mystery tour: discovering the truth and the beauty of the universe — a book review. Notices of the AMS, 47(2), 221–224.

    Google Scholar 

  • Stewart, I. (1989). Les mathématiques. Berlin (Springer).

  • Tabachnikov, S. (1995). Billiards. Société mathématique de France.

  • Thorn, R. (1972–1977). Stabilité structurelle et morphogénèse. Benjamin-Inter Editions, Paris.

  • Thom, R. (1989). Structural stability and morphogenesis: an outline of a general theory of models. Addison-Wesley.

  • Thomas, R. (1998). An update on the four-colour theorem. Notices of the AMS, 45(7), 848–859.

    MATH  Google Scholar 

  • Vinnikov, V. (1999). We shall know: Hilbert’s apology. Math. Intelligencer, 21-1, 42-46.

    Google Scholar 

  • von Neumann, J. (1961). The mathematician. In J. von Neumann, Complete Works (pp. 1-9). Pergamon.

  • von Neumann, J. (1963). The role of mathematics in the sciences and in society, address to Princeton graduate alumni. In John von Neumann, Complete Works (pp. 477-490). Pergamon. Weil, A. (1951–2000). Book review of Chevalley book on algebraic functions of one variable. Bulletin of the AMS, 57-37, 384-398, 103-105.

  • Weil, A. (1962). L’avenir des mathématiques. In Les grands courants de la pensée mathématique. Blanchard, Paris.

    Google Scholar 

  • Weil, A. (1978). S-S. Chern as a geometer and a friend. In S-S. Chern: selected papers Springer.

  • Weil, A. (1992). S-S. Chern as Geometer and Friend. In S.-T. Yau (Eds.), Chern- A Great Geometer of the Twentieth Century (pp. 72–78). Hong-Kong: International Press.

    Google Scholar 

  • Weil, A. (1996). S-S. Chern as a geometer and a friend. In L. Cheng Tian (Eds.), A mathematician and his mathematical work. World Scientific.

  • Zakharov, V. (1998). Description of the n-orthogonal curvilinear coordinate systems and Hamiltonian integrable systems of hydrodynamic type, I: Integration of the Lamé equation. Duke math. J., 103-139.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Berger.

Additional information

Ce texte est dédié à S. S. Chern, un géomètre s’il en fût, et en reconnaisassance personelle

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berger, M. Peut-on définir la géométrie aujourd’hui?. Results. Math. 40, 37–87 (2001). https://doi.org/10.1007/BF03322700

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322700

Keywords

Navigation