Skip to main content
Log in

On angle conditions in the finite element nethod

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

Angle conditions play an important role in the analysis of the finite element method. They enable us to derive the optimal interpolation order and prove convergence of this method, to derive various a posteriori error estimates, to perform regular mesh refinements, etc. In 1968, Miloš Zlámal introduced the minimum angle condition for triangular elements. From that time onward many other useful geometric angle conditions on the shape of elements appeared. In this paper, we shall give a survey of various generalizations of the minimum and also maximum angle condition in the finite element method and present some of their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Acosta, T. Apel, R. G. Durán, A. L. Lombardi. Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra. Math. Comput. 80 (2011), 141–163.

    MATH  Google Scholar 

  2. T. Apel. Anisotropic Finite Elements: Local Estimates and Applications, Adv. in Numer. Math., B. G. Teubner, Stuttgart, 1999.

    Google Scholar 

  3. I. Babuška, A. K. Aziz. On the angle condition in the finite element method. SIAM J. Numer. Anal. 13 (1976), 214–226.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. E. Barnhill, J. A. Gregory. Sard kernel theorems on triangular domains with applications to finite element error bounds. Numer. Math. 25 (1976), 215–229.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Brandts, S. Korotov, M. Křížek. The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem. Linear Algebra Appl. 429 (2008), 2344–2357.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Brandts, S. Korotov, M. Křížek. On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions. Comput. Math. Appl. 55 (2008), 2227–2233.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Brandts, S. Korotov, M. Křížek. On the equivalence of ball conditions for simplicial finite elements in R d. Appl. Math. Lett. 22 (2009), 1210–1212.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Brandts, S. Korotov, M. Křížek. Generalization of the Zlámal condition for simplicial finite elements in R d. Appl. Math. 56 (2011), 417–424.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Brandts, S. Korotov, M. Křížek. A geometric toolbox for tetrahedral finite element partitions. In: Efficient Preconditioned Solution Methods for Elliptic Partial Differential Equations (eds. O. Axelsson and J. Karátson), published electronically in 2011, 103–122.

  10. J. Brandts, S. Korotov, M. Křížek, J. Šolc. On nonobtuse simplicial partitions. SIAM Rev. 51 (2009), 317–335.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Brandts, M. Křížek. Gradient superconvergence on uniform simplicial partitions of polytopes. IMA J. Numer. Anal. 23 (2003), 489–505.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.

    MATH  Google Scholar 

  13. F. Eriksson. The law of sines for tetrahedra and n-simplices. Geom. Dedicata 7 (1978), 71–80.

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Feng. Difference schemes based on variational principle (in Chinese). J. Appl. Comput. Math. 2 (1965), 238–262.

    Google Scholar 

  15. M. Fiedler. Geometry of the simplex in E n (in Czech). Časopis Pěst. Mat. 79 (1954), 297–320.

    MathSciNet  Google Scholar 

  16. M. Fiedler. Über qualitative Winkeleigenschaften der Simplexe. Czechoslovak Math. J. 7 (1957), 463–478.

    MathSciNet  Google Scholar 

  17. A. Hannukainen, S. Korotov, M. Křížek. On global and local mesh refinements by a generalized conforming bisection algorithm. J. Comput. Appl. Math. 235 (2010), 419–436.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Hannukainen, S. Korotov, M. Křížek. Maximum angle condition is not necessary for convergence of the finite element method. Numer. Math. (in press), DOI 10.1007/s00211-011-0403-2.

  19. A. Hannukainen, S. Korotov, T. Vejchodský. Discrete maximum principle for FE-solutions of the diffusion-reaction problem on prismatic meshes. J. Comput. Appl. Math. 226 (2009), 275–287.

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Jamet. Estimation de l’erreur pour des éléments finis droits presque dégénérés. RAIRO Anal. Numér. 10 (1976), 43–60.

    MathSciNet  MATH  Google Scholar 

  21. J. Karátson, S. Korotov, M. Křížek. On discrete maximum principles for nonlinear elliptic problems. Math. Comput. Simulation 76 (2007), 99–108.

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Kopczyński, I. Pak, P. Przytycki. Acute triangulations of polyhedra and the Euclidean space. In: Proc. of the Annual Sympos. on Comput. Geom., Snowbird, Utah, 2010, 307–313.

  23. S. Korotov, M. Křížek. Acute type refinements of tetrahedral partitions of polyhedral domains. SIAM J. Numer. Anal. 39 (2001), 724–733.

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Korotov, M. Křížek. Local nonobtuse tetrahedral refinements of a cube. Appl. Math. Lett. 16 (2003), 1101–1104.

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Korotov, M. Křížek. Nonobtuse local tetrahedral refinements towards a polygonal face/interface. Appl. Math. Lett. 24 (2011), 817–821.

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Korotov, M. Křížek. Local nonobtuse tetrahedral refinement around an edge, accepted by Appl. Math. Comput. in 2011, 1–6.

  27. S. Korotov, M. Křížek, P. Neittaanmäki. Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle. Math. Comp. 70 (2001), 107–119.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Křížek. On semiregular families of triangulations and linear interpolation. Appl. Math. 36 (1991), 223–232.

    MathSciNet  MATH  Google Scholar 

  29. M. Křížek. On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal. 29 (1992), 513–520.

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Křížek. There is no face-to-face partition of R 5 into acute simplices. Discrete Comput. Geom. 36 (2006), 381–390. Erratum 44 (2010), 484–485.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. Křížek, Q. Lin. On diagonal dominance of stiffness matrices in 3D. East-West J. Numer. Math. 3 (1995), 59–69.

    MathSciNet  MATH  Google Scholar 

  32. M. Křížek, J. Pradlová. Nonobtuse tetrahedral partitions. Numer. Methods Partial Differential Equations 16 (2000), 327–334.

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Křížek, H.-G. Roos, W. Chen. Two-sided bounds of the discretization error for finite elements. ESAIM Math. Model. Numer. Anal. 45 (2011), 915–924.

    Article  MathSciNet  Google Scholar 

  34. J. Lin, Q. Lin. Global superconvergence of the mixed finite element methods for 2-d Maxwell equations. J. Comput. Math. 21 (2003), 637–646.

    MathSciNet  MATH  Google Scholar 

  35. S. Mao, Z. Shi. Error estimates of triangular finite elements under a weak angle condition. J. Comput. Appl. Math. 230 (2009), 329–331.

    Article  MathSciNet  MATH  Google Scholar 

  36. V. T. Rajan. Optimality of the Delaunay triangulations in R d. Discrete Comput. Geom. 12 (1994), 189–202.

    Article  MathSciNet  MATH  Google Scholar 

  37. G. Strang, G. Fix. An Analysis of the Finite Element Method. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1973.

    MATH  Google Scholar 

  38. M. Stynes. On faster convergence of the bisection method for certain triangles. Math. Comp. 33 (1979), 717–721.

    Article  MathSciNet  MATH  Google Scholar 

  39. M. Stynes. On faster convergence of the bisection method for all triangles. Math. Comp. 35 (1980), 1195–1201.

    Article  MathSciNet  MATH  Google Scholar 

  40. J. L. Synge. The Hypercircle in Mathematical Physics. Cambridge Univ. Press, Cambridge, 1957.

    MATH  Google Scholar 

  41. A. Üngör. Tiling 3D Euclidean space with acute tetrahedra. In: Proc. of the 13th Canadian Conf. on Comput. Geom., Wareloo, 2001, 169–172.

  42. J. Xu, L. Zikatanov. A monotone finite element scheme for convection-diffusion equations. Math. Comp. 68 (1999), 1429–1446.

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Ženíšek. The convergence of the finite element method for boundary value problems of a system of elliptic equations (in Czech). Apl. Mat. 14 (1969), 355–377.

    MathSciNet  MATH  Google Scholar 

  44. S. Zhang. Successive subdivisions of tetrahedra and multigrid methods on tetrahedral meshes. Houston J. Math. 21 (1995), 541–556.

    MathSciNet  MATH  Google Scholar 

  45. M. Zlámal. On the finite element method. Numer. Math. 12 (1968), 394–409.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Brandts.

Additional information

Dedicated to Prof. Martin Stynes on his 60th birthday

The third author was supported by Grant MTM2008-03541 of the MICINN, Spain, the ERC Advanced Grant FP7-246775 NUMERIWAVES and Grant PI2010-04 of the Basque Government, The fourth author was supported by the Grant no. IAA 100190803 of the Grant Agency of the Academy of Sciences of the Czech Republic and the Institutional Research Plan AV0Z 10190503.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandts, J., Hannukainen, A., Korotov, S. et al. On angle conditions in the finite element nethod. SeMA 56, 81–95 (2011). https://doi.org/10.1007/BF03322598

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322598

Key words

AMS subject classifications

Navigation