Skip to main content
Log in

Asymptotic mean value properties for the P-Laplacian

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

The purpose of this article is to obtain mean value characterizations of solutions to some nonlinear PDEs. To motivate the results we review some recent results concerning Tug-of-War games and their relation with PDEs. In particular, we will show that solutions to certain PDEs can be obtained as limits of values of Tug-of-War games when the parameter that controls the length of the possible movements goes to zero. Since the equations under study are nonlinear and not in divergence form we will make extensive use of the concept of viscosity solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Aronsson. Extensions of functions satisfying Lipschitz conditions. Ark. Mat. 6 (1967), 551–561.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. N. Armstrong, and C. K. Smart An easy proof of Jensen’ s theorem on the uniqueness of infinity harmonic functions. Calc. Var. Partial Differential Equations 37 (2010), no. 3–4, 381–384.

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Aronsson, M.G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions. Bull. Amer. Math. Soc., 41 (2004), 439–505.

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Barles and J. Busca, Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order terms. Comm. Partial Diff. Eq., 26 (2001), 2323–2337.

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Barles, and P.E. Souganidis,, Convergence of approximation schemes for fully nonlinear second order equations. Asymptotic Anal. 4 (1991), 271–283.

    MathSciNet  MATH  Google Scholar 

  6. E.N. Barron, L.C. Evans and R. Jensen, The infinity laplacian, Aronsson’s equation and their generalizations. Trans. Amer. Math. Soc. 360, (2008), 77–101.

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Bhattacharya, E. Di Benedetto and J. Manfredi, Limits as p → ∞ of Δp u p = ƒ and related extremal problems. Rend. Sem. Mat. Univ. Politec. Torino, (1991), 15–68.

    Google Scholar 

  8. L. Caffarelli and X. Cabre. Fully Nonlinear Elliptic Equations. Colloquium Publications 43, American Mathematical Society, Providence, RI, 1995.

    MATH  Google Scholar 

  9. F. Charro, J. Garcia Azorero and J. D. Rossi. A mixed problem for the infinity laplacian via Tug-of-War games. Calc. Var. Partial Differential Equations, 34(3) (2009), 307–320.

    Article  MathSciNet  MATH  Google Scholar 

  10. M.G. Crandall, H. Ishii and P.L. Lions. User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc., 27 (1992), 1–67.

    Article  MathSciNet  MATH  Google Scholar 

  11. W. H. Fleming, and P.E. Souganidis On the existence of value functions of two-player, zero-sum stochastic differential games. Indiana Univ. Math. J. 38 (1989), 293–314.

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Le Gruyer, On absolutely minimizing Lipschitz extensions and PDE Δ (u) = 0. NoDEA Nonlinear Differential Equations Appl. 14 (2007), 29–55.

    Article  MathSciNet  MATH  Google Scholar 

  13. E. Le Gruyer and J. C. Archer, Harmonious extensions. SIAM J. Math. Anal. 29 (1998), 279–292.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient. Arch. Rational Mech. Anal. 123 (1993), 51–74.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Juutinen; Principal eigenvalue of a badly degenerate operator and applications. J. Differential Equations, 236, (2007), 532–550.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Juutinen, Absolutely minimizing Lipschitz extension on a metric space. Ann. Acad. Sci. Fenn.. Math. 27 (2002), 57–67.

    MathSciNet  MATH  Google Scholar 

  17. P. Juutinen, Minimization problems for Lipschitz functions via viscosity solutions, Univ. Jyvaskyla, (1996), 1–39.

  18. P. Juutinen and P. Lindqvist, On the higher eigenvalues for the ∞-eigenvalue problem, Calc. Var. Partial Differential Equations, 23(2) (2005), 169–192.

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Juutinen, P. Lindqvist and J.J. Manfredi, The ∞-eigenvalue problem, Arch. Rational Mech. Anal., 148, (1999), 89–105.

    Article  MathSciNet  MATH  Google Scholar 

  20. P. Juutinen, P. Lindqvist and J.J. Manfredi, On the equivalence of viscosity solutions and weak solutions for a quasi-linear elliptic equation. SIAM J. Math. Anal. 33 (2001), 699–717.

    Article  MathSciNet  MATH  Google Scholar 

  21. R.V. Kohn and S. Serfaty, A deterministic-control-based approach to motion by curvature, Comm. Pure Appl. Math. 59(3) (2006), 344–407.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. P. Maitra, W. D. Sudderth, Discrete Gambling and Stochastic Games. Applications of Mathematics 32, Springer-Verlag (1996).

    Google Scholar 

  23. A. P. Maitra, and W. D. Sudderth, Borel stochastic games with lim sup payoff. Ann. Probab., 21(2):861–885, 1996.

    Article  MathSciNet  Google Scholar 

  24. J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization of p-harmonic functions. Proc. Amer. Math. Soc., 138, 881–889, (2010).

    Article  MathSciNet  MATH  Google Scholar 

  25. J. J. Manfredi, M. Parviainen and J. D. Rossi, Dynamic programming principle for tug-of-war games with noise. To appear in ESAIM. Control, Optim. Calc. Var. COCV.

  26. J. J. Manfredi, M. Parviainen and J. D. Rossi, On the definition and properties of p-harmonious functions. To appear in Ann. Scuola Normale Sup. Pisa, Clase di Scienze.

  27. J. J. Manfredi, M. Parviainen and J. D. Rossi, An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug-of-war games. SIAM J. Math. Anal., 42(5), 2058–2081, (2010).

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Neymann and S. Sorin (eds.), Sthocastic games & applications, pp. 27–36, NATO Science Series (2003).

  29. A. M. Oberman, A convergent difference scheme for the infinity-laplacian: construction of absolutely minimizing Lipschitz extensions, Math. Comp. 74 (2005), 1217–1230.

    Article  MathSciNet  MATH  Google Scholar 

  30. Y. Peres, G. Pete and S. Somersielle, Biased Tug-of-War, the biased infinity Laplacian and comparison with exponential cones. Calc. Var. Partial Differential Equations 38 (2010), no. 3–4, 541–564.

    Article  MathSciNet  MATH  Google Scholar 

  31. Y. Peres, O. Schramm, S. Sheffield and D. Wilson, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc. 22 (2009), 167–210.

    Article  MathSciNet  MATH  Google Scholar 

  32. Y. Peres, S. Sheffield, Tug-of-war with noise: a game theoretic view of the p-Laplacian. Duke Math. J. 145(1) (2008), 91–120.

    Article  MathSciNet  MATH  Google Scholar 

  33. Varadhan, S. R. S., Probability theory, Courant Lecture Notes in Mathematics, 7

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Rossi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossi, J.D. Asymptotic mean value properties for the P-Laplacian. SeMA 56, 35–62 (2011). https://doi.org/10.1007/BF03322596

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322596

Key words

AMS subject classifications

Navigation