Skip to main content
Log in

Approximation by diffusion of renewal equations

  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

In this paper, we consider an approximation by diffusion of a model of metastasis growth. We prove existence and uniqueness in L 1 of mild and classical solutions, in the sense of semigroup, and their convergence to mild and classical solutions of the original model, as the diffusion coefficient tends to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Abdellaoui and T.M. Touaoula, Decay solution for the renewal equation with diffusion, Nonlinear Differential Equations and Applications, 17, (2010), 271–288.

    Article  MathSciNet  MATH  Google Scholar 

  2. I. Aidar, Approximation par viscosité d’un modèle de croissance tumorale structuré par taille, Mémoire de Master 2, Spécialité Mathématiques Appliquées, Université Aix-Marseille (2008).

    Google Scholar 

  3. B. Basse, B.C. Baguley, E.S. Marshall, W.R. Joseph, B. van Brunt, G. Wake and D.J.N. Wall, A mathematical model for analysis of the cell cycle in cell lines derived from human tumors, J. Math. Biol., 47, (2003), 295–312.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter Representation and Control of Infinite Dimensional Systems, Birkhauser, (2007).

    Google Scholar 

  5. D. Barbolosi, A. Benabdallah, F. Hubert and F. Verga, Mathematical and numerical analysis for a model of growing metastatic tumors, Math. Biosci. 218 no. 1, (2009), 1–14.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Brezis, Analyse fonctionnelle, Théorie et applications, Masson, (1983).

    Google Scholar 

  7. R. Dautray and J.L. Lions, Analyse Mathématique et calcul numérique pour les sciences et les techniques, 5, Masson, (1988).

  8. A. Devys, T. Goudon and P. Lafitte, A model describing the growth and the size distribution of multiple metastatic tumors, Discrete Contin. Dyn. Syst. Ser. B, 12 no. 4, (2009), 731–767.

    Article  MathSciNet  MATH  Google Scholar 

  9. K.J. Engel and R. Nagel, One parameter Semigroups for Linear Evolution Equations, Springer, (2000).

  10. K. Iwata, K. Kawasaki and N. Shigesada, A dynamical Model for the Growth and Size Distribution of Multiple Metastatic Tumors, J. Theor. Biol., 203, (2000), 177–186.

    Article  Google Scholar 

  11. P. Michel, S. Mischler and B. Perthame, General relative entropy inequality: an illustration on growth models, J. Math. Pures Appl, 84, (2005), 9, 1235–1260.

    MathSciNet  MATH  Google Scholar 

  12. A. Pazy, Semigroups of linear Operators and Applications to Partial Differential Equations, Applied mathematical sciences, Springer-Verlag, (1983).

  13. B. Perthame, Transport Equations in Biology, Frontiers in Mathematics, Birkhauser, (2007).

    Google Scholar 

  14. M.H. Protter and H.F. Weinberger, Maximum Principles in Differential Equations, Springer-Verlag, (1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benabdallah Assia.

Additional information

This work was supported by ANR MEMOREX-PK (Projet ANR-09-BLAN-0217-01).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assia, B., Marie, H. Approximation by diffusion of renewal equations. SeMA 56, 5–34 (2011). https://doi.org/10.1007/BF03322595

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322595

Key words

Navigation