Skip to main content
Log in

Highly stable RK time advancing schemes for Computational Aero Acoustics

  • Sesiones Especiales
  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

In this paper a brief survey of finite difference methods and time discretization schemes for the numerical simulation of problems in Computational Aero Acoustics (CAA), with special emphasis in the contributions of the authors in the last years to the subject, is presented. Due to the specific properties of these problems it is shown by means of some illustrative examples that standard schemes have some drawbacks and new numerical schemes have been derived taking into account not only the usual stability and accuracy requirements but also the dissipation and dispersion properties as well as low storage requirements. Some relevant contributions to the subject are presented comparing the relative merits by means of a Fourier analysis and numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Berland, C. Bogey, O. Marsden and C. Bailly. High-order, low dispersive and low dissipative explicit schemes for multiple-scale and boundary problems J. of Comput. Phys. 224,2, 637–662 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  2. V. Allampalli, R. Hixon, M. Nallasamy and S.D. Sawyer. High-accuracy large-step explicit Runge-Kutta (HALE-RK) schemes for computational aeroacoustics J. Comput. Phys. 228, 3837–3850 (2009).

    Article  MATH  Google Scholar 

  3. C. Bogey and C. Bailly. A family of low dispersive and low dissipative explicit schemes for flow and noise computations J. Comput. Phys. 194, 194–214 (2004).

    Article  MATH  Google Scholar 

  4. M. Calvo, J.M. Franco, J.I. Montijano and L. Rández. Minimum Storage Runge-Kutta Schemes for Computational Accoustics Computers and Math. with Applications 45, pp. 535–545 (2003).

    Article  MATH  Google Scholar 

  5. M. Calvo, J.M. Franco and L. Rández. A new minimum storage Runge-Kutta scheme for computational accoustics J. Comput. Phys. 201, pp. 1–12 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Calvo, J.M. Franco, J.I. Montijano and L. Rández. Optimization of spatial and minimum storage RK schemes for computational acoustics Numerical Analysis and Applied Mathematics, International Conference on Numerical Analysis and Applied Mathematics 2009. AIP Conference Proceedings, 1168 743–745 (2009).

    Google Scholar 

  7. M. H. Carpenter and C. A. Kennedy. A Fourth-Order 2N-Storage Runge-Kutta Scheme NASA TR TM109112, June 1994.

  8. F. Q. Hu, M. Y. Hussaini and J. Manthey. Low-dissipation and low dispersion Runge-Kutta schemes for computational accoustics J. Comput. Phys. 124, 177–191 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  9. C. A. Kennedy M. H. Carpenter and R. M. Lewis. Low-storage, explicit Runge-Kutta schemes for the compressible Navier-Stokes equations NASA/CR-1999-209349, ICASE Report (99) (1999).

  10. J.L. Mead and R.A. Renaut. Optimal Runge-Kutta Methods for First Order Pseudospectral Operators J. Comput. Phys. 152, 404–419 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Ramboer, T. Broeckhoven, S. Smirnov and C. Lacor. Optimization of time integration schemes coupled to spatial discretization for use in CAA applications J. Comput. Phys. 213, 777–802 (2006).

    Article  MATH  Google Scholar 

  12. D. Stanescu and W. G. Habashi. 2N-Storage Low dissipation and Dispersion Runge-Kutta schemes for Computational Accoustics J. Comput. Phys. 143, 674–681 (1998).

    Article  MATH  Google Scholar 

  13. C.K.W. Tam and J.C. Webb. Dispersion-relation-preserving finite difference schemes for computational acoustics J. Comput. Phys. 107, 262 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  14. J.H. Williamson. Low-storage Runge-Kutta schemes J. Comput. Phys. 35, 48 (1980).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Calvo.

Additional information

This work was supported by project MTM2007-67530-C02-01

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calvo, M., Franco, J.M., Montijano, J.I. et al. Highly stable RK time advancing schemes for Computational Aero Acoustics. SeMA 50, 83–98 (2010). https://doi.org/10.1007/BF03322543

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322543

Keywords

Navigation