Skip to main content
Log in

Splitting methods with complex coefficients

  • Sesiones Especiales
  • Published:
SeMA Journal Aims and scope Submit manuscript

Abstract

Splitting methods for the numerical integration of differential equations of order greater than two involve necessarily negative coefficients. This order barrier can be overcome by considering complex coefficients with positive real part. In this work we review the composition technique used to construct methods of this class, propose new sixth-order integrators and analyze their main features on a pair of numerical examples, in particular how the errors are propagated along the evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Auer, E. Krotscheck, and S.A. Chin. A fourth-order real-space algorithm for solving local Schrödinger equations. J. Chem Phys., 115: 6841–6846, 2001.

    Article  Google Scholar 

  2. A.D. Bandrauk, E. Dehghanian, and H. Lu. Complex integration steps in decomposition of quantum exponential evolution operators. Chem. Phys. Lett., 419: 346–350, 2006.

    Article  Google Scholar 

  3. A.D. Bandrauk and Hai Shen, Improved exponential split operator method for solving the time-dependent Schrödinger equation. Chem. Phys. Lett., 176: 428–432, 1991.

    Article  Google Scholar 

  4. S. Blanes and F. Casas. On the necessity of negative coefficients for operator splitting schemes of order higher than two. Appl. Numer. Math., 54: 23–37, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Blanes, F. Casas, and A. Murua. On the linear stability of splitting methods. Found. Comp. Math., 8: 357–393, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  6. S. Blanes, F. Casas, and A. Murua. Splitting and composition methods in the numerical integration of differential equations. Bol. Soc. Esp. Math. Apl., 45: 87–143, 2008.

    Google Scholar 

  7. F. Castella, P. Chartier, S. Decombes, and G. Vilmart. Splitting methods with complex times for parabolic equations. BIT, 49: 487–508, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  8. J.E. Chambers. Symplectic integrators with complex time steps. Astron. J., 126: 1119–1126, 2003.

    Article  Google Scholar 

  9. D. Goldman and T.J. Kaper. nth-order operator splitting schemes and nonreversible systems. SIAM J. Numer. Anal., 33: 349–367, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  10. E. Hairer, Ch. Lubich, and G. Wanner. Geometric Numerical Integration. Structure-Preserving Algorithms for Ordinary Differential Equations. Springer-Verlag, Second edition, 2006.

  11. E. Hansen and A. Ostermann. High order splitting methods for analytic semigroups exist. BIT, 49: 527–542, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Iserles, H.Z. Munthe-Kaas, S.P. Nørsett, and A. Zanna. Lie-group methods. Acta Numerica, 9: 215–365, 2000.

    Article  Google Scholar 

  13. L. Lehtovaara, J. Toivanen, and J. Eloranta. Solution of time-independent Schrödinger equation by the imaginary time propagation method. J. Comput. Phys., 221: 148–157, 2007.

    Article  MATH  Google Scholar 

  14. B. Leimkuhler and S. Reich. Simulating Hamiltonian Dynamics. Cambridge University Press, 2004.

  15. R.I. McLachlan. On the numerical integration of ordinary differential equations by symmetric composition methods. SIAM J. Numer. Anal., 16: 151–168, 1995.

    MathSciNet  MATH  Google Scholar 

  16. R.I. McLachlan and R. Quispel. Splitting methods. Acta Numerica, 11: 341–434, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  17. R.I. McLachlan and R. Quispel. Geometric integrators for ODEs. J. Phys. A: Math. Gen., 39: 5251–5285, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Murua and J.M. Sanz-Serna. Order conditions for numerical integrators obtained by composing simpler integrators. Philos. Trans. Royal Soc. London, ser. A, 357: 1079–1100, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Prosen and I. Pizorn. High order non-unitary split-step decomposition of unitary operators. J. Phys. A: Math. Gen., 39: 5957–5964, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  20. J. M. Sanz-Serna and M. P. Calvo. Numerical Hamiltonian Problems. AMMC 7. Chapman & Hall, 1994.

  21. Q. Sheng. Solving linear partial differential equations by exponential splitting. IMA J. Numer. Anal., 9: 199–212, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Strang. On the construction and comparison of difference schemes. SIAM J. Numer. Anal., 5: 506–517, 1968.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Suzuki, Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A, 146: 319–323, 1990.

    Article  MathSciNet  Google Scholar 

  24. M. Suzuki. General theory of fractal path integrals with applications to many-body theories and statistical physics. J. Math. Phys., 32: 400–407. 1991.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Suzuki. Hybrid exponential product formulas for unbounded operators with possible applications to Monte Carlo simulations. Phys. Lett. A, 201: 425–428, 1995.

    Article  MathSciNet  Google Scholar 

  26. L. Verlet. Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev., 159: 98–103, 1967.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Blanes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blanes, S., Casas, F. & Murua, A. Splitting methods with complex coefficients. SeMA 50, 47–60 (2010). https://doi.org/10.1007/BF03322541

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322541

Keywords

Navigation