Advertisement

Results in Mathematics

, Volume 24, Issue 1–2, pp 3–11 | Cite as

Hanno Rund

  • Hanno Rund
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Publications: Books

  1. 1959 “The Differential Geometry of Finsler Spaces” Springer-Verlag (Berlin-Göttingen-Heidelberg), Grundlehren Serie, 289 pp.Google Scholar
  2. 1966 “The Hamilton-Jacobi Theory in the Calculus of Variations” D. Van Nostrand (London u. New York), 404 pp.Google Scholar
  3. 1970 “Introduction to Algebra and Analysis” (with J.H.V.D. Merwe et al) McGraw Hill (New York-Johannesburg), 450 pp.Google Scholar
  4. 1973 “The Hamilton-Jacobi Theory in the Calculus of Variations”, revised and augmented reprint, R.E. Krieger Publishing Co., (New York), XV–440 pp.Google Scholar
  5. 1975 “Tensors, Differential Forms, and Varational Principles” (with D. Lovelock), Wiley Interscience, pp.364.Google Scholar
  6. 1982 “The Differential Geometry of Finsler Spaces”, Russian Translation by G.S. Asanov (Nauka, Moscow, USSR)(Expanded and Modernized Version of 1959 Edition, three additional chapters by author, two addenda by Asanov).Google Scholar
  7. 1990 “Tensors, Differential Forms, and Variational Principles” (with D. Lovelock), Dover Publications (N.Y.) Reprint of 1975 Edition, with new Appendix on global geometry by H.R.).Google Scholar

Monographs

  1. 1971 “Invariant theory of variational problems on subspaces of a Riemannian Manifold” Hamburg. Math. Einzelschriften, N.5., Göttingen (55 pages).Google Scholar
  2. 1981 “Generalized Gauge Fields and Fibre Bundles” Studia-Series Mathematica (125 pages)Google Scholar

Professional Journal Articles Published since 1950

  1. 1950 Finsler spaces considered as locally Minkowskian spaces. Ph.D.-thesis, University of Cape Town, 107 pp.Google Scholar
  2. 1951 Über die Parallelverschiebung in Finslerschen Räumen. Math.Z. 54, 115–128.Google Scholar
  3. 1952 A theory of curvature in Finsler spaces. Colloque de Topologie de Strasbourg (1951), no.IV, 12 pp. La Bibliothèque Nationale et Universitaire.Google Scholar
  4. 1952 Zur Begründung der Differentialgeometrie in Minkowskischen Räumen. Arch.Math. 3, 60–69.Google Scholar
  5. 1952 Über die Hamiltonsche Funktion bei allgemeinen dynamischen Systemen. Arch.Math. 3, 207–215.Google Scholar
  6. 1952 Eine Krümmungstheorie in Finslerschen Räumen. Math.Ann. 125, 1–18.Google Scholar
  7. 1952 Über Kurven and Flächen in metrischen Räumen endlicher Dimensionszahl. Habilitationsschrift, Univ. of Freiburg, 70 pp.Google Scholar
  8. 1952 The theory of subspaces of a Finsler space. Part I. Math.Z. 56, 363–375.Google Scholar
  9. 1953 The theory of subspaces of a Finsler space. Part. II. Math.Z.57, 193–210.Google Scholar
  10. 1953 The scalar form of Jacobi’s equation in the calculus of variations. Ann.Mat.pura appl. (IV)35, 183–202.Google Scholar
  11. 1953 On the geometry of generalized metric spaces. Convegno Internazionale di Geometria Differenziale, Bologna, 113–131.Google Scholar
  12. 1953 Applications des méthodes de la géometrie métrique generalisée à la dynamique théorique. Géometrie differentielle, Colloques Internationaux de C.W.R.S.,Paris, 41–51.Google Scholar
  13. 1953 On the analytical properties of curvature tensors in Finsler spaces. Math.Ann.127, 82–104.Google Scholar
  14. 1954 Über nicht-holonome allgemeine metrische Geometric Math.Nachr.11,61–80.Google Scholar
  15. 1956 Hypersurfaces of a Finsler space. Canadian J.Math.8, 487–503.Google Scholar
  16. 1957 Über allgemeine nicht-holonome und dissipative dynamische Systeme. Bericht von der Riemann-Tagung, Deutsche Akademie der Wissenschaften, Berlin, 269–279.Google Scholar
  17. 1958 The theory of non-linear connections. Koninkl. Nederl. Akad. Wetensch. Amsterdam, Proc/S.61. 335–347.Google Scholar
  18. 1959 Some remarks concerning Caratheodory’s method of equivalent integrals in the calculus of variations. Koninkl. Nederl.Akad.Wetensch.Amsterdam, Proc. A.62, 135–141.Google Scholar
  19. 1959 The Differential Geometry of Finsler Spaces. Springer-Verlag, Berlin-Heidelberg-Göttingen, Die Grundlehren der mathematischen Wissenschaften. XV-284 pp.Google Scholar
  20. 1961 Dynamics of particles with internal spin. Ann. Physik (7)7, 17–27.Google Scholar
  21. 1961 The theory of problems in the calculus of variations whose Lagrangians involve higher order derivatives: a new approach. Ann.Mat.pura appl.(IV)55, 77–104.Google Scholar
  22. 1961 Some curvature properties of solution manifolds of variational problems involving multiple integrals. Tydskr.Natuurw. 1,171–178.Google Scholar
  23. 1962 The Lagrangian formalism in relativistic dynamics. Nuovo Cimento (X) 23,227–232.Google Scholar
  24. 1962 Über Finslersche Räume mit speziellen Krümmungseigenschaften. Monatsh. Math. 66, 241–251.Google Scholar
  25. 1962 The world view of modern theoretical physics. Comm.Univ. of South Africa A 13, 1–12.Google Scholar
  26. 1962 A characteristic property of Finsler spaces of constant curvature. Tydskr. Natuurw. 2, 63–70.Google Scholar
  27. 1962 General relativistic wave equations. Tydskr. Natuurw. 2, 157–165.Google Scholar
  28. 1963 Curvature properties of hypersurfaces of Finsler and Minkowskian spaces. Tensor (N.S.)14, 226–244.Google Scholar
  29. 1963 On the Weierstrass excess functions of multiple parameter-invariant integrals in the calculus of variations. Tydskr.Natuurw., 3, 168–179.Google Scholar
  30. 1963 A general theory of multiple integral problems in the calculus of variations. 1963 Colloquium on the calculus of variations, University of South Africa, 88–114.Google Scholar
  31. 1964 On a certain operator-differential equation. Tydskr.Naturuw. 4, 27–30.Google Scholar
  32. 1964 Canonical formalism for parameter-invariant integrals in the calculus of variations whose Lagrange functions involve second order derivatives. Ann.Mat.pura appl. 64, 99–108.Google Scholar
  33. 1964 Problems in the calculus of variations whose unknown functions are tensor components.Google Scholar
  34. 1964 Colloquium on the calculus of variations, University of South Africa, 129–174.Google Scholar
  35. 1965 The intrinsic and induced curvature theories of subspaces of a Finsler space. Tensor (N.S.)16, 294–312.Google Scholar
  36. 1965 Calculus of variations on complex manifolds. 1965 Colloquium on the calculus of variations. University of South Africa, 10–85.Google Scholar
  37. 1966 Variational problems involving combined tensor fields. Abhandlungen Math.Sem. Univ. Hamburg 29, 243–262.Google Scholar
  38. 1966 The Hamilton-Jacobi theory in the calculus of variations. D. van Nostrand Co., Ltd., London and New York, XIV + 404 pp.Google Scholar
  39. 1966 A Hamiltonian formalism in relativistic mechanics. Chapter 34: “Perspectives in geometry and relativity”. University of Indiana Press, Bloomington, Ind., U.S.A., 325–339.Google Scholar
  40. 1966 Über die physikalische Bedeutung des Laplace-Lenz Vektors. Acta phys.Austriaca, 24, 365–367.Google Scholar
  41. 1966 Finsler spaces in geodesic correspondence. Tydskr. Natuurw.6, 243–254.Google Scholar
  42. 1967 Generalized metrics on complex manifolds. Mathematische Nachrichten,33,55–77.Google Scholar
  43. 1967 Invariance properties of variational principles: their general implications in physical field theories. Tydskr.Natuurw.,7, 474–497.Google Scholar
  44. 1967 Invariant variational problems for geometric objects, Tensor (N.S.)18, 239–258.Google Scholar
  45. 1967 On a class of variational principles associated with boundary value problems. Joint Math.Coll.1967: University of South Africa and University of the Witwatersrand, 1–29.Google Scholar
  46. 1967 Theory of generalized connections and curvature on complex manifolds. Joint Math. Coll.Google Scholar
  47. 1967:University of South Africa and University of the Witwatersrand,47–99.Google Scholar
  48. 1968 Systems of linear equations as canonical or Euler-Lagrange equations. J.Math.Phys. 8, 2059–2062.Google Scholar
  49. 1968 A geometric theory of multiple integral problems in the calculus of variations. Canadian J.Math.20, 639–659.Google Scholar
  50. 1968 A canonical formalism for multiple integral problems in the calculus of variations. Aequationes Math.3, 44–63. [also Notices Amer.math.Soc.393].Google Scholar
  51. 1969 Structural invariance of Hamiltonian systems. Tydskr. Natuurw.9, 181–190.Google Scholar
  52. 1969 Parameter-dependent canonical transformations. Tensor (N.S.)20, 213–228.Google Scholar
  53. 1669 Multiple integral isoperimetric problems as problems of Lagrange in the calculus of variations. Joint Math.Coll.1968/69:University of South Africa and the University of the Witwatersrand, 320–355.Google Scholar
  54. 1970 The reduction of certain boundary value problems by means of transversality conditions. Numerische Mathematik.15, 49–56.Google Scholar
  55. 1970 (With J. H.V.C. Merwe et al.) Introduction to modern algebra and analysis, McGraw-Hill (New York and Johannesburg), 452 pp.Google Scholar
  56. 1970 Canonical theory of higher order multiple integral problems in the calculus of variations. Tydskr.Natuurw.10, No.3, 15 pp.Google Scholar
  57. 1970 Curvature invariants associated with complete sets of fundamental forms of hyper-surfaces of Riemannian manifolds. Tensor (N.S.)22, approx.20 pp.Google Scholar
  58. 1970 (With J.H. Beare) Variational problems involving direction dependent fields. Monograph M2, University of South Africa Mathematical MonographSeries (1970), approx.80 pp.Google Scholar
  59. 1970 Integral formulae on hypersurfaces in Riemannian manifolds. Annali di Mat.(1971), approx.25 pp.Google Scholar
  60. 1974 “Transversality and Fields of Extremals of Multiple Integral Problems in the Calculus of Varations”, Aequationes Math.10, 236–261.Google Scholar
  61. 1974 “Transformation Theory of the Canonical Formalism Associated with Multiple Integral Varational Problems”, Tensor (N.S.)28, 205–217.Google Scholar
  62. 1974 “Systems of Non-linear Partial Differential Equations for Coherent Optical Pulse Propagation in an Inhomogeneously Broadened Medium and Associated Conservation Laws”, Optics Communications, 12, 123–128.Google Scholar
  63. 1974 “Sufficiency Conditions for Multiple Integral Control Problems”, J.Opt.Theory Appl.13, 125–138.Google Scholar
  64. 1974 “An Integral Invariant Associated with the Geodesic Field Theory of Weyl in the Calculus of Varations of Multiple Integrals”, Utilitas Math.5, 93–112.Google Scholar
  65. 1974 “Integral Formulae Associated with the Euler-Lagrange Operators of Multiple Integral Problems in the Calculus of Variations”, Aequationes Math.11, 38–55.Google Scholar
  66. 1975 “The Hamilton-Jacobi Theory of the Geodesic Fields of Caratheodory in the Calculus of Variations of Multiple Integrals”, Proceedings of the International Caratheodory Centenary symposium, Athens (1973), Greek Mathematical Society, pp.496–536.Google Scholar
  67. 1975 “The Equation of Geodesic Deviation of Levi-Civita — Its Generalizations and Implications”, “Proceedings of the International Centenary Celebration in Honor of Levi-Civita, Academia Nazionale Dei Lincei”, Rome 1973, pp.77–112.Google Scholar
  68. 1975 “A Divergence Theorem for Finsler Metrics and a Gauss-Bonnet Type Formula”, Monatshefte für Mathematik, 79, pp.233–252.Google Scholar
  69. 1975 “Conservations Criteria, Canonical Transformations, and Integral Invariants in the Field Theory of Caratheodory for Variational Problems”, Aquationes Math., 13, pp.121–149.Google Scholar
  70. 1975 (with H.J.Oosthuizen), “A Canonical Theory of the Classical Electromagnetic Field” Utilitas Math., 7, pp.295–230.Google Scholar
  71. 1975 “Applications of Backlund Transformations to the Theory of Surfaces”, Boll. Unione Mat.Italiana,12, pp.297–313.Google Scholar
  72. 1976 “Variational Problems and Backlund Transformations Associated with the Sine-Gordon and Korteweg-de Vries Equations and their Generalizations”, Proc. Nashville Conference on Contact Transformations, Springer Lecture Notes, in Mathematiacs, Vol.515, pp.199–266.Google Scholar
  73. 1976 “Pontryagin Functions for Multiple Integral Problems”, J.Opt.Theory Appl., 18, pp. 511–520.Google Scholar
  74. 1976 “Clebsch Representations on Manifolds”, In “Topics in Differential Geometry”, Academic Press, pp.111–133.Google Scholar
  75. 1976 “Backlund Transformations Associated with 4-Dimensional Generalized Wave Equations”, Abh.Math.Sem.Univ.Hamburg, 45,pp.207–217.Google Scholar
  76. 1976 “Adjoint problems in the Calculus of Variations of Multiple Integrals”, Quaestiones Math.,1,pp.29–82.Google Scholar
  77. 1977 “Reciprocal Relations for Fluid Flows Generated by Divergence-Free Geometric Object Fields”, Tensor (N.S.),31, pp.55–63.Google Scholar
  78. 1977 “Clebsch Potentials in the Theory of Electromagnetic Fields Admitting Electric and Magnetic Charge Distributions”, J.Math.Phys.,18, pp.84–95.Google Scholar
  79. 1977 “Energy-Momentum Tensors in the Theory of Electromagnetic Fields Admitting Electric and Magnetic Charge Distributions”, J.Math.Phys.18, 1312–1315.Google Scholar
  80. 1977 “The Formulation of Variational Principles by Means of Clebsch Potentials”, in “The Significance of Nonlinearity in the Natural Sciences”, Studies in Natural Sciences, Vol. 13 (Plenum Press, New York), 121–144.Google Scholar
  81. 1977 “Clebsch Potentials and Variational Principles in the Theory of Dynamical Systems”, Arch.Rat.Mech.Analysis 65, 305–344.Google Scholar
  82. 1978 “Clebsch Representations in the Theory of Minimum Energy Equilibrium Solution in Magnetohydrodynamics”, Journal of Plasma Physics, 20, 329–344 (with D.R. Wells).Google Scholar
  83. 1978 Systems of Total Differential Equations and the Group SL(N,R), Tensor (N.S.)32, 373–379.Google Scholar
  84. 1978 “Evolution Equations and Curvature Forms. Part I — Equations of the Sine-Gordon Type”, Utilitas Mathematica 14, pp.189–218.Google Scholar
  85. 1979 Variational Derivation and Uniqueness of the Equation of Motion of a Particle in a Classical Gauge Field, Hardronic Journal Vol.2, pp.67–90.Google Scholar
  86. 1979 Representation of the Duals of Gauge Field Tensors, Journal of Mathematical Physics.20, pp.1392–1397.Google Scholar
  87. 1979 Generalized Gauge Field Theories. Vol.1, C.R./Math.Rep.Acad.Sci.Canada pp.83–86.Google Scholar
  88. 1979 Decompositions of Connection and Curvature Forms. Tensor (N.S.)33, pp.97–108.Google Scholar
  89. 1979 Evolution Equations and Curvature Forms. Part II–Equations of the Korteweg-de Vries type. Utilitas Mathematica. 15, 217–243.Google Scholar
  90. 1979 Clebsch Representations and Relativistic Dynamical Systems. Arch.Rat.Mech. Analysis 71, 199–220.Google Scholar
  91. 1980 Direction-Dependent Connection and Curvature Forms. Abh.Math.Sem.Univ. Hamburg 50, 186–207.Google Scholar
  92. 1980 Connection and Curvature Forms Generated by Invariant Variational Principles. Resultate Math.3, 74–120.Google Scholar
  93. 1981 Connections in Generalized Gauge Fields, In Christoffel Centenary Volume, 550–560, Birkhäuser Verlag, Basel.Google Scholar
  94. 1981 An Extension of Noether’s Theorem to Transformations Involving Position-Dependent Parameters and their Derivatives. Foundations of Physics, 11, 809–838.Google Scholar
  95. 1981 Subspaces of Manifolds with Direction-Dependent Connections. Tensor (N.S.), 35, 139–154.Google Scholar
  96. 1981 Eu1er-Lagrange Equations as Divergence Conditions. Quaest.Math.4, 229–253.Google Scholar
  97. 1982 Invariance theory of distributions associated with multiple integral problems in the calculus of variations. Tensor (N.S.)39, 45–66.Google Scholar
  98. 1982 The construction of the complete figure in the calculus of variations of multiple integrals: a direct approach. Quaest.Math.5, 187–218.Google Scholar
  99. 1982 Differential-geometric and variational background of classical gauge field theories. Aequations Math.24, 121–174.Google Scholar
  100. 1983 Invariance identities associated with finite gauge transformations and the uniqueness of the equations of motion of a particle in a classical gauge field. Foundations of Physics 13, 93–114.Google Scholar
  101. 1983 Classes of connections associated with distributions on product spaces. Quaest. Math.6, 363–384.Google Scholar
  102. 1983 Lectures on Symplectic Geometry and Geometric Quantization. Colloquium Publications of the University of South Africa, 89 pp.Google Scholar
  103. 1983 Congruences of Null-Extremals in the calculus of variations. J.Nat.Acad.Math. (India)!, 165–178.Google Scholar
  104. 1984 Variational Principles for Field Variables that are subject to Group Actions. In “Differential Topology”, a volume in honor of Marston Morse, Teubner Verlag, Leipzig (29 pages).Google Scholar
  105. 1984 Null-Distributions in the calculus of variations of multiple integrals. Math.Colloq. Univ.Cape Town, 13, 57–82.Google Scholar
  106. 1984 Gauge Transformations of type (0,2) tensor fields and associated Varational Principles. Quaest.Math.7, 105–140.Google Scholar
  107. 1984 A Cartan form for the field theory of Caratheodory in the calculus of variations of multiple integrals. In “Calculus of Variations and Global Analysis”, a volume in honor of L.Euler (Marcel Dekker, N.Y.), (30 pages).Google Scholar
  108. 1989 Adapted contact structures and parameter-dependend canonical transformations. To appear in Constantin Caratheodory: an international tribute, Greek Mathematical Society, Athens (1989), 39 pages.Google Scholar
  109. 1989 Differential-geometric structures associated with families of r-parameter point transformations. In Geometry and Topology ed. G.M. Stratopoulos, World Sci. Publ.Co., Singapore (1989), 259–280.Google Scholar
  110. 1989 Local differential-geometric structures on Lie groups, Tensor (N.S.)48(1989),71–94.Google Scholar
  111. 1989 Legendre Transformations and Cartan forms in the calculus of variations of multiple integrals. Part I: Legendre Transformations, Quaest.Math. 12 (1989), 205–229. Part II: Canonical Distributions and Cartan forms, Quaest.Math. 12(1989),315–339 Google Scholar
  112. 1990 Invariant variational problems on group manifolds. To appear in: Quaest.Math., 40 pages.Google Scholar
  113. 1990 Adjoint connections on group manifolds and gauge transformations. in “The Mathematical Heritage of C.F.Gauss”, ed.G.Rassias, World Scientific Publ.Co. Singapore, 1990, 1–24.Google Scholar

Copyright information

© Birkhäuser Verlag, Basel 1993

Authors and Affiliations

  • Hanno Rund

There are no affiliations available

Personalised recommendations