Skip to main content
Log in

Biorthogonal decompositions of the Radon transform by multivariate interpolation

  • Article
  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

The concept of biorthogonal and singular value decompositions is a valuable tool in the examination of ill-posed inverse problems such as the inversion of the Radon transform. By application of the theory of multivariate interpolation, e. g. the set of Lagrange polynomials with respect to the space of homogeneous spherical polynomials, we determine new biorthogonal decompositions of the Radon transform. We consider the case of functions with support in the unit ball and the case of functions with support ℝr. In both cases we assume that the functions are square integrable with respect to some weight functions. In the important special case of square integrable functions with respect to the unit ball the structure of the biorthogonal decompositions is easier in comparison with the known singular and biorthogonal decompositions. Especially the calculation of the unknown expansion coefficients can be done by using arbitrary fundamental systems (μ-resolving data set in terms of tomography with a minimum number of nodes) and simplifies essentially. The decompositions are based on a system of zonal (ridge) Gegenbauer (ultraspherical) polynomials which are used in the theory of the Radon transform and in the field of numerical algorithms for the inversion of the transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angelesco, A.: Sur des polynomes généralisant les polynomes de Legendre et d’ Hermite et sur le calcul approché des intégrales multiples. Diss. Paris 1916.

  2. Appell, P., Kampé de Fériet, J.: Fonctions hypergéométriques et hypersphériques. Polynomes d’ Hermite. Paris: Gauthier-Villars 1926.

    Google Scholar 

  3. Cormack, A. M.: Representation of a function by its line integrals with some radiological applications II, J. Appl. Phys. 35, p. 2908–2912 (1964).

    Article  MATH  Google Scholar 

  4. Davison, M. E.: A singular value decomposition for the Radon transform in n-dimensional space, Numer. Funct. Anal. and optimiz. 3, p. 321–340 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  5. Davison, M. E.: The ill-conditioned nature of the limited angle tomography problem, SIAM J. Appl. Math. 43, p. 428–448 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  6. Davison, M. E., Grünbaum, F. A.: Tomographic reconstruction with arbitrary directions, Comm. Pure Appl. Math. 34, p. 77–119 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  7. Deans, S. R.: The Radon transform and some of its applications. New York: John Wiley & Sons 1983.

    MATH  Google Scholar 

  8. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F. G.: Higher transcendental Functions, Vol. II. New York, Toronto, London: McGraw-Hill 1953.

    Google Scholar 

  9. Fromm, J.: Tschebyscheff-Polynome in mehreren Veränderlichen. Diss. Dortmund 1975.

  10. Louis, A. K.: Picture reconstruction from projections in restricted range, Math. Meth. Appl. Sci. 2, p. 209–220 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  11. Louis, A. K.: Approximation of the Radon transform from samples in limited range, in: Herman, G. T., Natterer, F. (eds): Mathematical aspects of computerized tomography, Lecture notes in Biomathematics 26, p. 127 - 139, Springer 1981.

  12. Louis, A. K.: Ghosts in tomography — The null space of the Radon transform, Math. Meth. Appl. Sci. 2, p. 1–10 (1981).

    Article  MathSciNet  Google Scholar 

  13. Louis, A. K.: Orthogonal function series expansions and the null space of the Radon transform, SIAM J. Math. Anal. 15, p. 621–633 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  14. Louis, A. K.: Laguerre and computerized tomography: consistency conditions and stability of the Radon transform, in: Brezinski, C., Draux, A., Magnus, A. P., Maroni, P., Rouveaux, A. (eds): Polynomes orthogonaux et applications, LNM 1171, p. 524 - 531, Springer 1985.

  15. Louis, A. K.: Inverse und schlecht gestellte Probleme. Stuttgart: B. G. Teubner 1989.

    Book  MATH  Google Scholar 

  16. Marr, R. B.: On the reconstruction of a function on a circular domain from a sampling of its line integrals, J. Math. Anal. Appl. 45, p. 357–374 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  17. Natterer, F.: The mathematics of computerized tomography. Stuttgart: B. G. Teubner, New York: John Wiley & Sons 1986.

    MATH  Google Scholar 

  18. Reimer, M.: Constructive theory of multivariate functions. Mannheim, Wien, Zürich: BI-Wissenschaftsverlag 1990.

    MATH  Google Scholar 

  19. Reimer, M., Sündermann, B.: A Remez-type algorithm for the calculation of extremal fundamental systems for polynomial spaces on the sphere, Computing 37, p. 43–58 (1989).

    Article  Google Scholar 

  20. Rosier, M.: Biorthogonale Zerlegungen der Radon-Transformation mit Appell-Polynomen. Diss. Dortmund 1992.

  21. Rosier, M.: Biorthogonal decompositions of the Radon transform, Numer. Math., accepted for publication.

  22. Rosier, M.: Biorthogonal series expansions of the x-ray and k-plane transform, Inverse Problems 11, p. 231–249 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  23. Rosier, M.: Biorthogonal series expansions of the Radon and k-plane transform for functions with support ℝr, submitted for publication.

  24. Smith, K T., Solmon, D C.: Lower dimensional integrability of L2 functions, J. Math. Anal. Appl. 51, p. 539–549 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  25. Tricomi, F. G.: Vorlesungen über Orthogonalreihen. Berlin, etc.: Springer 1955.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper contains the new results of a lecture of the author held at the First International Conference on Multivariate Approximation, 23–26. September 1994, Haus Bommerholz, Germany.

The basic idea of this paper had been carried out while the author was working at the University of Dortmund, Department of Mathematics.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosier, M. Biorthogonal decompositions of the Radon transform by multivariate interpolation. Results. Math. 29, 335–354 (1996). https://doi.org/10.1007/BF03322229

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322229

Mathematics Subject Classification (1991)

Key Words

Navigation