Skip to main content
Log in

The height of minimal Hilbert bases

  • Research article
  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

For an integral polyhedral cone C = pos{a1,…,am, a i ∈ ℤd, a subset \(\cal B\)(C) ⊂ C ∩d is called a minimal Hilbert basis of C iff (i) each element of C∩ℤd can be written as a non-negative integral combination of elements of \(\cal B\)(C) and (ii) \(\cal B\)(C) has minimal cardinality with respect to all subsets of C ∩d for which (i) holds. We give a tight bound for the so-called height of an element of the basis which improves on former results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Gordan, Über die Auflösung linearer Gleichungen mit reellen Coefficienten, Math. Ann. 6 (1873), 23–28.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Schrijver, Theory of linear and integer programming, John Wiley and Sons, Chichester, 1986.

    MATH  Google Scholar 

  3. J.G. van der Corput, Über Systeme von linear-homogenen Gleichungen und Ungleichungen, Proceedings Koninklijke Akademie van Wetenschappen te Amsterdam 34 (1931), 368–371.

    Google Scholar 

  4. A. Sebö, Hilbert bases, Caratheodory’s Theorem and combinatorial optimization, Proc. of the IPCO Conference, Waterloo, Canada, 1990, 431–455.

    Google Scholar 

  5. R. Urbaniak, R. Weismantel, and G.M. Ziegler, A variant of Buchberger’s algorithm for integer programming, SIAM J. Discrete Math., to appear.

  6. R. Weismantel, Hilbert bases and the facets of special knapsack polytopes, Math. Oper. Res. 21(4) (1996), 896–904.

    Article  MathSciNet  Google Scholar 

  7. C. Bouvier and G. Gonzalez-Springberg, G-désingularisations de variétés toriques, C. R. Acad.Sci. Paris, t.315, Série I, (1992), 817–820.

  8. D. Dais, M. Henk, and G.M. Ziegler, On the existence of crepant resolutions of Gorenstein abelian quotient singularities in dimensions ≥ 4, in preparation (1996)

  9. G. Ewald, Combinatorial Convexity and Algebraic Geometry, Graduate Texts in Mathematics Vol. 168, Springer, Berlin, 1996.

  10. T. Oda, Convex bodies and algebraic geometry, Springer, New-York, 1985.

    Google Scholar 

  11. G. Ewald and U. Wessels, On the ampleness of invertible sheaves in complete projective toric varieties, Result. Math. 19 (1991), 275–278.

    MathSciNet  MATH  Google Scholar 

  12. J. Liu, L.E. Trotter, Jr., and G.M. Ziegler, On the Height of the minimal Hilbert basis, Result. Math. 23 (1993), 374–376.

    MathSciNet  MATH  Google Scholar 

  13. P.M. Gruber and C.G. Lekkerkerker, Geometry of numbers, 2nd ed., North-Holland, Amsterdam, 1987.

  14. W. Cook, A.M.H. Gerards, A. Schrijver, and E. Tardos, Sensitivity theorems in integer programming problems, Math. Programming 34 (1986), 63–70.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Henk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henk, M., Weismantel, R. The height of minimal Hilbert bases. Results. Math. 32, 298–303 (1997). https://doi.org/10.1007/BF03322141

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322141

1991 Mathematics Subject Classification

Key words and Phrases

Navigation