Skip to main content
Log in

Cycles in de Sitter’s world

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

A Lie cycle is a point in spherical geometry or an oriented spherical hypersphere. This definition as well as the definition of oriented contact between pairs of cycles are applied to de Sitter’s world. We determine the transformation group of the geometry of de Sitter cycles which consists of all permutations of the set \({\cal C}^{n}\) of de Sitter cycles which preserve oriented contact in both directions. We show that an arbitrary mapping \(f:{\cal C}^{n}\ \rightarrow \ {\cal C}^{n}\) which satisfies c, c′ are in oriented contact ⇔ f(c), f(c′) are in oriented contact for all \(c,c^{\prime}\in{\cal C}^{n}\) is already an element of the transformation group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Benz. Geometrische Transformationen. BI Wissenschaftsverlag, Mannheim; Leipzig; Wien; Zürich, 1992.

    Google Scholar 

  2. W. Blaschke. Vorlesungen über Differentialgeometrie III. lag von Julius Springer, Berlin 1929.

    Google Scholar 

  3. T. E. Cecil. Lie Sphere Geometry. Springer-Verlag, New York Berlin Heidelberg, 1992.

    Book  Google Scholar 

  4. R. Höfer. On the geometry of hyperbolic cycles. Aequationes Math., 56169–180, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  5. W. Benz. Characterizations of geometrical mappings under mild hypotheses: Über ein modernes Forschungsgebiet der Geometrie. Hamb. Beitr. Wiss.gesch., 15:393–409, 1994.

    Google Scholar 

  6. W. Benz. Real Geometries. BI Wissenschaftsverlag, Mannheim, Leipzig, Wien, Zürich, 1994.

    Google Scholar 

  7. A. K. Guts. Axiomatic relativity theory. Russian Math. Surveys, 37(2):41–89, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. A. Lester. Distance preserving transformations. In F. Buekenhout, editor, Handbook of Incidence Geometry, pages 921-944, Amsterdam, 1995. Elsevier.

  9. R. Höfer, m-point invariants of real geometries. Beiträge Algebra Geom., 40(1):261–266, 1999.

    MATH  Google Scholar 

  10. H. Van Maldeghem. Generalized Polygons. Birkhäuser, 1998.

  11. A. D. Alexandrov. On the axioms of relativity theory. Vestnik Leningrad Univ. Math., 19:5–28, 1976.

    Google Scholar 

  12. J. A. Lester. A physical characterization of conformai transformations of Minkowski spacetime. Ann. Discrete Math., 18:567–574, 1983.

    MathSciNet  MATH  Google Scholar 

  13. I. Popovici and D. C. R. Characterizing the conformality in a Minkowski space. Ann. Inst. H. Poincaré. Phys. Théor., 35:131–148, 1981.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Höfer, R. Cycles in de Sitter’s world. Results. Math. 36, 57–68 (1999). https://doi.org/10.1007/BF03322102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03322102

AMS (1991) subject classification

Keywords

Navigation